Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Support evaluating CocoMetric without ann_file. #1722

Merged
merged 6 commits into from
Oct 26, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
auto_scale_lr = dict(base_batch_size=512)

# hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater'))
default_hooks = dict(checkpoint=dict(save_best='ap10k/AP', rule='greater'))

# codec settings
codec = dict(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
auto_scale_lr = dict(base_batch_size=512)

# hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater'))
default_hooks = dict(checkpoint=dict(save_best='ap10k/AP', rule='greater'))

# codec settings
codec = dict(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
auto_scale_lr = dict(base_batch_size=512)

# hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater'))
default_hooks = dict(checkpoint=dict(save_best='ap10k/AP', rule='greater'))

# codec settings
codec = dict(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
auto_scale_lr = dict(base_batch_size=512)

# hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater'))
default_hooks = dict(checkpoint=dict(save_best='ap10k/AP', rule='greater'))

# codec settings
codec = dict(
Expand Down
14 changes: 14 additions & 0 deletions mmpose/datasets/datasets/base/base_coco_style_dataset.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp
from copy import deepcopy
from itertools import filterfalse, groupby
Expand Down Expand Up @@ -184,6 +185,10 @@ def _load_annotations(self):
check_file_exist(self.ann_file)

coco = COCO(self.ann_file)
# set the metainfo about categories, which is a list of dict
# and each dict contains the 'id', 'name', etc. about this category
self._metainfo['CLASSES'] = coco.loadCats(coco.getCatIds())

data_list = []

for img_id in coco.getImgIds():
Expand Down Expand Up @@ -259,8 +264,14 @@ def parse_data_info(self, raw_data_info: dict) -> Optional[dict]:
'iscrowd': ann.get('iscrowd', 0),
'segmentation': ann.get('segmentation', None),
'id': ann['id'],
# store the raw annotation of the instance
# it is useful for evaluation without providing ann_file
'raw_ann_info': copy.deepcopy(ann),
}

if 'crowdIndex' in img:
data_info['crowdIndex'] = img['crowdIndex']

return data_info

@staticmethod
Expand Down Expand Up @@ -347,6 +358,9 @@ def _load_detection_results(self) -> List[dict]:

# load coco annotations to build image id-to-name index
coco = COCO(self.ann_file)
# set the metainfo about categories, which is a list of dict
# and each dict contains the 'id', 'name', etc. about this category
self._metainfo['CLASSES'] = coco.loadCats(coco.getCatIds())

num_keypoints = self.metainfo['num_keypoints']
data_list = []
Expand Down
16 changes: 11 additions & 5 deletions mmpose/datasets/transforms/formatting.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,9 @@ class PackPoseInputs(BaseTransform):

- ``img_path``: path to the image file

- ``crowd_index`` (optional): measure the crowding level of an image,
defined in CrowdPose dataset

- ``ori_shape``: original shape of the image as a tuple (h, w, c)

- ``img_shape``: shape of the image input to the network as a tuple \
Expand All @@ -63,11 +66,14 @@ class PackPoseInputs(BaseTransform):

- ``flip_indices``: the indices of each keypoint's symmetric keypoint

- ``raw_ann_info`` (optional): raw annotation of the instance(s)

Args:
meta_keys (Sequence[str], optional): Meta keys which will be stored in
:obj: `PoseDataSample` as meta info. Defaults to ``('id',
'img_id', 'img_path', 'ori_shape', 'img_shape', 'input_size',
'flip', 'flip_direction', 'flip_indices)``
'img_id', 'img_path', 'crowd_index, 'ori_shape', 'img_shape',
'input_size', 'flip', 'flip_direction', 'flip_indices',
'raw_ann_info')``
"""

# items in `instance_mapping_table` will be directly packed into
Expand All @@ -94,9 +100,9 @@ class PackPoseInputs(BaseTransform):
}

def __init__(self,
meta_keys=('id', 'img_id', 'img_path', 'ori_shape',
'img_shape', 'input_size', 'flip',
'flip_direction', 'flip_indices'),
meta_keys=('id', 'img_id', 'img_path', 'crowd_index',
'ori_shape', 'img_shape', 'input_size', 'flip',
'flip_direction', 'flip_indices', 'raw_ann_info'),
pack_transformed=False):
self.meta_keys = meta_keys
self.pack_transformed = pack_transformed
Expand Down
112 changes: 78 additions & 34 deletions mmpose/evaluation/functional/nms.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,18 +3,20 @@
# Original licence: Copyright (c) Microsoft, under the MIT License.
# ------------------------------------------------------------------------------

from typing import List, Optional

import numpy as np


def nms(dets, thr):
def nms(dets: np.ndarray, thr: float) -> List[int]:
"""Greedily select boxes with high confidence and overlap <= thr.

Args:
dets: [[x1, y1, x2, y2, score]].
thr: Retain overlap < thr.
dets (np.ndarray): [[x1, y1, x2, y2, score]].
thr (float): Retain overlap < thr.

Returns:
list: Indexes to keep.
list: Indexes to keep.
"""
if len(dets) == 0:
return []
Expand Down Expand Up @@ -48,19 +50,38 @@ def nms(dets, thr):
return keep


def oks_iou(g, d, a_g, a_d, sigmas=None, vis_thr=None):
def oks_iou(g: np.ndarray,
d: np.ndarray,
a_g: float,
a_d: np.ndarray,
sigmas: Optional[np.ndarray] = None,
vis_thr: Optional[float] = None) -> np.ndarray:
"""Calculate oks ious.

Note:

- number of keypoints: K
- number of instances: N

Args:
g: Ground truth keypoints.
d: Detected keypoints.
a_g: Area of the ground truth object.
a_d: Area of the detected object.
sigmas: standard deviation of keypoint labelling.
vis_thr: threshold of the keypoint visibility.
g (np.ndarray): The instance to calculate OKS IOU with other
instances. Containing the keypoints coordinates. Shape: (K*3, )
d (np.ndarray): The rest instances. Containing the keypoints
coordinates. Shape: (N, K*3)
a_g (float): Area of the ground truth object.
a_d (np.ndarray): Area of the detected object. Shape: (N, )
sigmas (np.ndarray, optional): Keypoint labelling uncertainty.
Please refer to `COCO keypoint evaluation
<https://cocodataset.org/#keypoints-eval>`__ for more details.
If not given, use the sigmas on COCO dataset.
If specified, shape: (K, ). Defaults to ``None``
vis_thr(float, optional): Threshold of the keypoint visibility.
If specified, will calculate OKS based on those keypoints whose
visibility higher than vis_thr. If not given, calculate the OKS
based on all keypoints. Defaults to ``None``

Returns:
list: The oks ious.
np.ndarray: The oks ious.
"""
if sigmas is None:
sigmas = np.array([
Expand All @@ -86,15 +107,26 @@ def oks_iou(g, d, a_g, a_d, sigmas=None, vis_thr=None):
return ious


def oks_nms(kpts_db, thr, sigmas=None, vis_thr=None, score_per_joint=False):
def oks_nms(kpts_db: List[dict],
thr: float,
sigmas: Optional[np.ndarray] = None,
vis_thr: Optional[float] = None,
score_per_joint: bool = False):
"""OKS NMS implementations.

Args:
kpts_db: keypoints.
thr: Retain overlap < thr.
sigmas: standard deviation of keypoint labelling.
vis_thr: threshold of the keypoint visibility.
score_per_joint: the input scores (in kpts_db) are per joint scores
kpts_db (List[dict]): The keypoints results of the same image.
thr (float): The threshold of NMS. Will retain oks overlap < thr.
sigmas (np.ndarray, optional): Keypoint labelling uncertainty.
Please refer to `COCO keypoint evaluation
<https://cocodataset.org/#keypoints-eval>`__ for more details.
If not given, use the sigmas on COCO dataset. Defaults to ``None``
vis_thr(float, optional): Threshold of the keypoint visibility.
If specified, will calculate OKS based on those keypoints whose
visibility higher than vis_thr. If not given, calculate the OKS
based on all keypoints. Defaults to ``None``
score_per_joint(bool): Whether the input scores (in kpts_db) are
per-joint scores. Defaults to ``False``

Returns:
np.ndarray: indexes to keep.
Expand Down Expand Up @@ -128,14 +160,18 @@ def oks_nms(kpts_db, thr, sigmas=None, vis_thr=None, score_per_joint=False):
return keep


def _rescore(overlap, scores, thr, type='gaussian'):
def _rescore(overlap: np.ndarray,
scores: np.ndarray,
thr: float,
type: str = 'gaussian'):
"""Rescoring mechanism gaussian or linear.

Args:
overlap: calculated ious
scores: target scores.
thr: retain oks overlap < thr.
type: 'gaussian' or 'linear'
overlap (np.ndarray): The calculated oks ious.
scores (np.ndarray): target scores.
thr (float): retain oks overlap < thr.
type (str): The rescoring type. Could be 'gaussian' or 'linear'.
Defaults to ``'gaussian'``

Returns:
np.ndarray: indexes to keep
Expand All @@ -152,20 +188,28 @@ def _rescore(overlap, scores, thr, type='gaussian'):
return scores


def soft_oks_nms(kpts_db,
thr,
max_dets=20,
sigmas=None,
vis_thr=None,
score_per_joint=False):
def soft_oks_nms(kpts_db: List[dict],
thr: float,
max_dets: int = 20,
sigmas: Optional[np.ndarray] = None,
vis_thr: Optional[float] = None,
score_per_joint: bool = False):
"""Soft OKS NMS implementations.

Args:
kpts_db
thr: retain oks overlap < thr.
max_dets: max number of detections to keep.
sigmas: Keypoint labelling uncertainty.
score_per_joint: the input scores (in kpts_db) are per joint scores
kpts_db (List[dict]): The keypoints results of the same image.
thr (float): The threshold of NMS. Will retain oks overlap < thr.
max_dets (int): Maximum number of detections to keep. Defaults to 20
sigmas (np.ndarray, optional): Keypoint labelling uncertainty.
Please refer to `COCO keypoint evaluation
<https://cocodataset.org/#keypoints-eval>`__ for more details.
If not given, use the sigmas on COCO dataset. Defaults to ``None``
vis_thr(float, optional): Threshold of the keypoint visibility.
If specified, will calculate OKS based on those keypoints whose
visibility higher than vis_thr. If not given, calculate the OKS
based on all keypoints. Defaults to ``None``
score_per_joint(bool): Whether the input scores (in kpts_db) are
per-joint scores. Defaults to ``False``

Returns:
np.ndarray: indexes to keep.
Expand Down
7 changes: 4 additions & 3 deletions mmpose/evaluation/metrics/__init__.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,12 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .coco_metric import CocoMetric
from .coco_metric import AP10KCocoMetric, CocoMetric
from .coco_wholebody_metric import CocoWholeBodyMetric
from .keypoint_2d_metrics import (AUC, EPE, NME, JhmdbPCKAccuracy,
MpiiPCKAccuracy, PCKAccuracy)
from .posetrack18_metric import PoseTrack18Metric

__all__ = [
'CocoMetric', 'PCKAccuracy', 'MpiiPCKAccuracy', 'JhmdbPCKAccuracy', 'AUC',
'EPE', 'NME', 'PoseTrack18Metric', 'CocoWholeBodyMetric'
'CocoMetric', 'AP10KCocoMetric', 'PCKAccuracy', 'MpiiPCKAccuracy',
'JhmdbPCKAccuracy', 'AUC', 'EPE', 'NME', 'PoseTrack18Metric',
'CocoWholeBodyMetric'
]
Loading