Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] Update pose tracking demo to be compatible with latest mmtrakcing #1014

Merged
merged 3 commits into from
Nov 15, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
321 changes: 321 additions & 0 deletions demo/mmtracking_cfg/deepsort_faster-rcnn_fpn_4e_mot17-private-half.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,321 @@
model = dict(
detector=dict(
type='FasterRCNN',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(
type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0],
clip_border=False),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=0.1111111111111111,
loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(
type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=1,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2],
clip_border=False),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', loss_weight=1.0))),
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100)),
init_cfg=dict(
type='Pretrained',
checkpoint='https://download.openmmlab.com/mmtracking/'
'mot/faster_rcnn/faster-rcnn_r50_fpn_4e_mot17-half-64ee2ed4.pth')),
type='DeepSORT',
motion=dict(type='KalmanFilter', center_only=False),
reid=dict(
type='BaseReID',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(3, ),
style='pytorch'),
neck=dict(type='GlobalAveragePooling', kernel_size=(8, 4), stride=1),
head=dict(
type='LinearReIDHead',
num_fcs=1,
in_channels=2048,
fc_channels=1024,
out_channels=128,
num_classes=380,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
loss_pairwise=dict(
type='TripletLoss', margin=0.3, loss_weight=1.0),
norm_cfg=dict(type='BN1d'),
act_cfg=dict(type='ReLU')),
init_cfg=dict(
type='Pretrained',
checkpoint='https://download.openmmlab.com/mmtracking/'
'mot/reid/tracktor_reid_r50_iter25245-a452f51f.pth')),
tracker=dict(
type='SortTracker',
obj_score_thr=0.5,
reid=dict(
num_samples=10,
img_scale=(256, 128),
img_norm_cfg=None,
match_score_thr=2.0),
match_iou_thr=0.5,
momentums=None,
num_tentatives=2,
num_frames_retain=100))
dataset_type = 'MOTChallengeDataset'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadMultiImagesFromFile', to_float32=True),
dict(type='SeqLoadAnnotations', with_bbox=True, with_track=True),
dict(
type='SeqResize',
img_scale=(1088, 1088),
share_params=True,
ratio_range=(0.8, 1.2),
keep_ratio=True,
bbox_clip_border=False),
dict(type='SeqPhotoMetricDistortion', share_params=True),
dict(
type='SeqRandomCrop',
share_params=False,
crop_size=(1088, 1088),
bbox_clip_border=False),
dict(type='SeqRandomFlip', share_params=True, flip_ratio=0.5),
dict(
type='SeqNormalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='SeqPad', size_divisor=32),
dict(type='MatchInstances', skip_nomatch=True),
dict(
type='VideoCollect',
keys=[
'img', 'gt_bboxes', 'gt_labels', 'gt_match_indices',
'gt_instance_ids'
]),
dict(type='SeqDefaultFormatBundle', ref_prefix='ref')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1088, 1088),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='VideoCollect', keys=['img'])
])
]
data_root = 'data/MOT17/'
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type='MOTChallengeDataset',
visibility_thr=-1,
ann_file='data/MOT17/annotations/half-train_cocoformat.json',
img_prefix='data/MOT17/train',
ref_img_sampler=dict(
num_ref_imgs=1,
frame_range=10,
filter_key_img=True,
method='uniform'),
pipeline=[
dict(type='LoadMultiImagesFromFile', to_float32=True),
dict(type='SeqLoadAnnotations', with_bbox=True, with_track=True),
dict(
type='SeqResize',
img_scale=(1088, 1088),
share_params=True,
ratio_range=(0.8, 1.2),
keep_ratio=True,
bbox_clip_border=False),
dict(type='SeqPhotoMetricDistortion', share_params=True),
dict(
type='SeqRandomCrop',
share_params=False,
crop_size=(1088, 1088),
bbox_clip_border=False),
dict(type='SeqRandomFlip', share_params=True, flip_ratio=0.5),
dict(
type='SeqNormalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='SeqPad', size_divisor=32),
dict(type='MatchInstances', skip_nomatch=True),
dict(
type='VideoCollect',
keys=[
'img', 'gt_bboxes', 'gt_labels', 'gt_match_indices',
'gt_instance_ids'
]),
dict(type='SeqDefaultFormatBundle', ref_prefix='ref')
]),
val=dict(
type='MOTChallengeDataset',
ann_file='data/MOT17/annotations/half-val_cocoformat.json',
img_prefix='data/MOT17/train',
ref_img_sampler=None,
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1088, 1088),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='VideoCollect', keys=['img'])
])
]),
test=dict(
type='MOTChallengeDataset',
ann_file='data/MOT17/annotations/half-val_cocoformat.json',
img_prefix='data/MOT17/train',
ref_img_sampler=None,
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1088, 1088),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='VideoCollect', keys=['img'])
])
]))
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=100,
warmup_ratio=0.01,
step=[3])
total_epochs = 4
evaluation = dict(metric=['bbox', 'track'], interval=1)
search_metrics = ['MOTA', 'IDF1', 'FN', 'FP', 'IDs', 'MT', 'ML']
9 changes: 8 additions & 1 deletion demo/top_down_pose_tracking_demo_with_mmtracking.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,14 @@ def process_mmtracking_results(mmtracking_results):
:return: a list of tracked bounding boxes
"""
person_results = []
for track in mmtracking_results['track_results'][0]:
# 'track_results' is changed to 'track_bboxes'
# in https://github.com/open-mmlab/mmtracking/pull/300
if 'track_bboxes' in mmtracking_results:
tracking_results = mmtracking_results['track_bboxes'][0]
elif 'track_results' in mmtracking_results:
tracking_results = mmtracking_results['track_results'][0]

for track in tracking_results:
person = {}
person['track_id'] = int(track[0])
person['bbox'] = track[1:]
Expand Down