-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
137 additions
and
30 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -154,17 +154,41 @@ Feel free to join our community group for more help: | |
- Flip test is used. | ||
- Inference speed measured on more hardware platforms can refer to [Benchmark](./benchmark/README.md) | ||
- If you have datasets you would like us to support, feel free to [contact us](https://docs.google.com/forms/d/e/1FAIpQLSfzwWr3eNlDzhU98qzk2Eph44Zio6hi5r0iSwfO9wSARkHdWg/viewform?usp=sf_link)/[联系我们](https://uua478.fanqier.cn/f/xxmynrki). | ||
- | ||
|
||
### Body 2d (17 Keypoints) | ||
|
||
| Config | Input Size | AP<sup><br>(COCO) | Params(M) | FLOPS(G) | ORT-Latency(ms)<sup><br>(i7-11700) | TRT-FP16-Latency(ms)<sup><br>(GTX 1660Ti) | ncnn-FP16-Latency(ms)<sup><br>(Snapdragon 865) | Download | | ||
| :--------------: | :--------: | :---------------: | :-------: | :------: | :--------------------------------: | :---------------------------------------: | :--------------------------------------------: | :-----------------: | | ||
| [RTMPose-t](./rtmpose/body_2d_keypoint/rtmpose-t_8xb256-420e_coco-256x192.py) | 256x192 | 68.5 | 3.34 | 0.36 | 3.20 | 1.06 | 9.02 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-tiny_simcc-aic-coco_pt-aic-coco_420e-256x192-cfc8f33d_20230126.pth) | | ||
| [RTMPose-s](./rtmpose/body_2d_keypoint/rtmpose-s_8xb256-420e_coco-256x192.py) | 256x192 | 72.2 | 5.47 | 0.68 | 4.48 | 1.39 | 13.89 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-s_simcc-aic-coco_pt-aic-coco_420e-256x192-fcb2599b_20230126.pth) | | ||
| [RTMPose-m](./rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-256x192.py) | 256x192 | 75.8 | 13.59 | 1.93 | 11.06 | 2.29 | 26.44 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-aic-coco_pt-aic-coco_420e-256x192-63eb25f7_20230126.pth) | | ||
| [RTMPose-l](./rtmpose/body_2d_keypoint/rtmpose-l_8xb256-420e_coco-256x192.py) | 256x192 | 76.5 | 27.66 | 4.16 | 18.85 | 3.46 | 45.37 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-aic-coco_pt-aic-coco_420e-256x192-f016ffe0_20230126.pth) | | ||
| [RTMPose-m](./rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-384x288.py) | 384x288 | 77.0 | 13.72 | 4.33 | 24.78 | 3.66 | - | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-aic-coco_pt-aic-coco_420e-384x288-a62a0b32_20230228.pth) | | ||
| [RTMPose-l](./rtmpose/body_2d_keypoint/rtmpose-l_8xb256-420e_coco-384x288.py) | 384x288 | 77.3 | 27.79 | 9.35 | - | 6.05 | - | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-aic-coco_pt-aic-coco_420e-384x288-97d6cb0f_20230228.pth) | | ||
#### AIC+COCO | ||
|
||
| Config | Input Size | AP<sup><br>(COCO) | [email protected]<sup><br>(Body8) | AUC<sup><br>(Body8) | EPE<sup><br>(Body8) | Params(M) | FLOPS(G) | ORT-Latency(ms)<sup><br>(i7-11700) | TRT-FP16-Latency(ms)<sup><br>(GTX 1660Ti) | ncnn-FP16-Latency(ms)<sup><br>(Snapdragon 865) | Download | | ||
| :---------------------------------------------------------------------------: | :--------: | :---------------: | :---------------------: | :-----------------: | :-----------------: | :-------: | :------: | :--------------------------------: | :---------------------------------------: | :--------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------: | | ||
| [RTMPose-t](./rtmpose/body_2d_keypoint/rtmpose-t_8xb256-420e_coco-256x192.py) | 256x192 | 68.5 | 91.28 | 63.38 | 19.87 | 3.34 | 0.36 | 3.20 | 1.06 | 9.02 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-tiny_simcc-aic-coco_pt-aic-coco_420e-256x192-cfc8f33d_20230126.pth) | | ||
| [RTMPose-s](./rtmpose/body_2d_keypoint/rtmpose-s_8xb256-420e_coco-256x192.py) | 256x192 | 72.2 | 92.95 | 66.19 | 17.32 | 5.47 | 0.68 | 4.48 | 1.39 | 13.89 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-s_simcc-aic-coco_pt-aic-coco_420e-256x192-fcb2599b_20230126.pth) | | ||
| [RTMPose-m](./rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-256x192.py) | 256x192 | 75.8 | 94.13 | 68.53 | 15.42 | 13.59 | 1.93 | 11.06 | 2.29 | 26.44 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-aic-coco_pt-aic-coco_420e-256x192-63eb25f7_20230126.pth) | | ||
| [RTMPose-l](./rtmpose/body_2d_keypoint/rtmpose-l_8xb256-420e_coco-256x192.py) | 256x192 | 76.5 | 94.35 | 68.98 | 15.10 | 27.66 | 4.16 | 18.85 | 3.46 | 45.37 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-aic-coco_pt-aic-coco_420e-256x192-f016ffe0_20230126.pth) | | ||
| [RTMPose-m](./rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-384x288.py) | 384x288 | 77.0 | 94.32 | 69.85 | 14.64 | 13.72 | 4.33 | 24.78 | 3.66 | - | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-aic-coco_pt-aic-coco_420e-384x288-a62a0b32_20230228.pth) | | ||
| [RTMPose-l](./rtmpose/body_2d_keypoint/rtmpose-l_8xb256-420e_coco-384x288.py) | 384x288 | 77.3 | 94.54 | 70.14 | 14.30 | 27.79 | 9.35 | - | 6.05 | - | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-aic-coco_pt-aic-coco_420e-384x288-97d6cb0f_20230228.pth) | | ||
|
||
#### Body8 | ||
|
||
- `*` denotes model trained on 7 public datasets: | ||
- [AI Challenger](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#aic) | ||
- [MS COCO](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#coco) | ||
- [CrowdPose](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#crowdpose) | ||
- [MPII](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#mpii) | ||
- [sub-JHMDB](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#sub-jhmdb-dataset) | ||
- [Halpe](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_wholebody_keypoint.html#halpe) | ||
- [PoseTrack18](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#posetrack18) | ||
- `Body8` denotes the addition of the [OCHuman](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#ochuman) dataset, in addition to the 7 datasets mentioned above, for evaluation. | ||
|
||
| Config | Input Size | AP<sup><br>(COCO) | [email protected]<sup><br>(Body8) | AUC<sup><br>(Body8) | EPE<sup><br>(Body8) | Params(M) | FLOPS(G) | ORT-Latency(ms)<sup><br>(i7-11700) | TRT-FP16-Latency(ms)<sup><br>(GTX 1660Ti) | ncnn-FP16-Latency(ms)<sup><br>(Snapdragon 865) | Download | | ||
| :-----------------------------------------------------------------------------: | :--------: | :---------------: | :---------------------: | :-----------------: | :-----------------: | :-------: | :------: | :--------------------------------: | :---------------------------------------: | :--------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------: | | ||
| [RTMPose-t\*](./rtmpose/body_2d_keypoint/rtmpose-t_8xb256-420e_coco-256x192.py) | 256x192 | 65.9 | 91.44 | 63.18 | 19.45 | 3.34 | 0.36 | 3.20 | 1.06 | 9.02 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-t_simcc-body7_pt-body7_420e-256x192-026a1439_20230504.pth) | | ||
| [RTMPose-s\*](./rtmpose/body_2d_keypoint/rtmpose-s_8xb256-420e_coco-256x192.py) | 256x192 | 69.7 | 92.45 | 65.15 | 17.85 | 5.47 | 0.68 | 4.48 | 1.39 | 13.89 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-s_simcc-body7_pt-body7_420e-256x192-acd4a1ef_20230504.pth) | | ||
| [RTMPose-m\*](./rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-256x192.py) | 256x192 | 74.9 | 94.25 | 68.59 | 15.12 | 13.59 | 1.93 | 11.06 | 2.29 | 26.44 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-body7_pt-body7_420e-256x192-e48f03d0_20230504.pth) | | ||
| [RTMPose-l\*](./rtmpose/body_2d_keypoint/rtmpose-l_8xb256-420e_coco-256x192.py) | 256x192 | 76.7 | 95.08 | 70.14 | 13.79 | 27.66 | 4.16 | 18.85 | 3.46 | 45.37 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-body7_pt-body7_420e-256x192-4dba18fc_20230504.pth) | | ||
| [RTMPose-m\*](./rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-384x288.py) | 384x288 | 76.6 | 94.64 | 70.38 | 13.98 | 13.72 | 4.33 | 24.78 | 3.66 | - | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-body7_pt-body7_420e-384x288-65e718c4_20230504.pth) | | ||
| [RTMPose-l\*](./rtmpose/body_2d_keypoint/rtmpose-l_8xb256-420e_coco-384x288.py) | 384x288 | 78.3 | 95.36 | 71.58 | 13.08 | 27.79 | 9.35 | - | 6.05 | - | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-body7_pt-body7_420e-384x288-3f5a1437_20230504.pth) | | ||
|
||
#### Model Pruning | ||
|
||
|
@@ -210,12 +234,37 @@ Coming soon | |
|
||
We provide the UDP pretraining configs of the CSPNeXt backbone. Find more details in the [pretrain_cspnext_udp folder](./rtmpose/pretrain_cspnext_udp/). | ||
|
||
| Model | Input Size | Params(M) | Flops(G) | AP<sup><br>(GT) | AR<sup><br>(GT) | Download | | ||
| :----------: | :--------: | :-------: | :------: | :-------------: | :-------------: | :-------------------------------------------------------------------------------------------------------------------------------: | | ||
| CSPNeXt-tiny | 256x192 | 6.03 | 1.43 | 65.5 | 68.9 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/cspnext-tiny_udp-aic-coco_210e-256x192-cbed682d_20230130.pth) | | ||
| CSPNeXt-s | 256x192 | 8.58 | 1.78 | 70.0 | 73.3 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/cspnext-s_udp-aic-coco_210e-256x192-92f5a029_20230130.pth) | | ||
| CSPNeXt-m | 256x192 | 13.05 | 3.06 | 74.8 | 77.7 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/cspnext-m_udp-aic-coco_210e-256x192-f2f7d6f6_20230130.pth) | | ||
| CSPNeXt-l | 256x192 | 32.44 | 5.33 | 77.2 | 79.9 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/cspnext-l_udp-aic-coco_210e-256x192-273b7631_20230130.pth) | | ||
#### AIC+COCO | ||
|
||
| Model | Input Size | Params(M) | Flops(G) | AP<sup><br>(GT) | AR<sup><br>(GT) | Download | | ||
| :----------: | :--------: | :-------: | :------: | :-------------: | :-------------: | :-----------------------------------------------------------------------------------------------------------------------------: | | ||
| CSPNeXt-tiny | 256x192 | 6.03 | 1.43 | 65.5 | 68.9 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmpose/cspnext-tiny_udp-aic-coco_210e-256x192-cbed682d_20230130.pth) | | ||
| CSPNeXt-s | 256x192 | 8.58 | 1.78 | 70.0 | 73.3 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmpose/cspnext-s_udp-aic-coco_210e-256x192-92f5a029_20230130.pth) | | ||
| CSPNeXt-m | 256x192 | 17.53 | 3.05 | 74.8 | 77.7 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmpose/cspnext-m_udp-aic-coco_210e-256x192-f2f7d6f6_20230130.pth) | | ||
| CSPNeXt-l | 256x192 | 32.44 | 5.32 | 77.2 | 79.9 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmpose/cspnext-l_udp-aic-coco_210e-256x192-273b7631_20230130.pth) | | ||
|
||
#### Body8 | ||
|
||
- `*` denotes model trained on 7 public datasets: | ||
- [AI Challenger](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#aic) | ||
- [MS COCO](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#coco) | ||
- [CrowdPose](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#crowdpose) | ||
- [MPII](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#mpii) | ||
- [sub-JHMDB](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#sub-jhmdb-dataset) | ||
- [Halpe](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_wholebody_keypoint.html#halpe) | ||
- [PoseTrack18](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#posetrack18) | ||
- `Body8` denotes the addition of the [OCHuman](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#ochuman) dataset, in addition to the 7 datasets mentioned above, for evaluation. | ||
|
||
| Model | Input Size | Params(M) | Flops(G) | AP<sup><br>(COCO) | [email protected]<sup><br>(Body8) | AUC<sup><br>(Body8) | EPE<sup><br>(Body8) | Download | | ||
| :------------: | :--------: | :-------: | :------: | :---------------: | :---------------------: | :-----------------: | :-----------------: | :-------------------------------------------------------------------------------: | | ||
| CSPNeXt-tiny\* | 256x192 | 6.03 | 1.43 | 65.9 | 96.34 | 63.80 | 18.63 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/cspnext-tiny_udp-body7_210e-256x192-a3775292_20230504.pth) | | ||
| CSPNeXt-s\* | 256x192 | 8.58 | 1.78 | 68.7 | 96.59 | 64.92 | 17.84 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/cspnext-s_udp-body7_210e-256x192-8c9ccbdb_20230504.pth) | | ||
| CSPNeXt-m\* | 256x192 | 17.53 | 3.05 | 73.7 | 97.42 | 68.19 | 15.12 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/cspnext-m_udp-body7_210e-256x192-e0c9327b_20230504.pth) | | ||
| CSPNeXt-l\* | 256x192 | 32.44 | 5.32 | 75.7 | 97.76 | 69.57 | 13.96 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/cspnext-l_udp-body7_210e-256x192-5e9558ef_20230504.pth) | | ||
| CSPNeXt-m\* | 384x288 | 17.53 | 6.86 | 75.8 | 97.60 | 70.18 | 14.04 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/cspnext-m_udp-body7_210e-384x288-b9bc2b57_20230504.pth) | | ||
| CSPNeXt-l\* | 384x288 | 32.44 | 11.96 | 77.2 | 97.89 | 71.23 | 13.05 | [Model](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/cspnext-l_udp-body7_210e-384x288-b15bc30d_20230504.pth) | | ||
|
||
#### ImageNet | ||
|
||
We also provide the ImageNet classification pre-trained weights of the CSPNeXt backbone. Find more details in [RTMDet](https://github.com/open-mmlab/mmdetection/blob/latest/configs/rtmdet/README.md#classification). | ||
|
||
|
Oops, something went wrong.