-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
721 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
381 changes: 381 additions & 0 deletions
381
configs/hand_2d_keypoint/rtmpose/hand5/rtmpose-m_8xb256-210e_hand5-256x256.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,381 @@ | ||
_base_ = ['../../../_base_/default_runtime.py'] | ||
|
||
# coco-hand onehand10k freihand2d rhd2d halpehand | ||
|
||
# runtime | ||
max_epochs = 210 | ||
stage2_num_epochs = 10 | ||
base_lr = 4e-3 | ||
|
||
train_cfg = dict(max_epochs=max_epochs, val_interval=10) | ||
randomness = dict(seed=21) | ||
|
||
# optimizer | ||
optim_wrapper = dict( | ||
type='OptimWrapper', | ||
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05), | ||
paramwise_cfg=dict( | ||
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True)) | ||
|
||
# learning rate | ||
param_scheduler = [ | ||
dict( | ||
type='LinearLR', | ||
start_factor=1.0e-5, | ||
by_epoch=False, | ||
begin=0, | ||
end=1000), | ||
dict( | ||
# use cosine lr from 150 to 300 epoch | ||
type='CosineAnnealingLR', | ||
eta_min=base_lr * 0.05, | ||
begin=max_epochs // 2, | ||
end=max_epochs, | ||
T_max=max_epochs // 2, | ||
by_epoch=True, | ||
convert_to_iter_based=True), | ||
] | ||
|
||
# automatically scaling LR based on the actual training batch size | ||
auto_scale_lr = dict(base_batch_size=256) | ||
|
||
# codec settings | ||
codec = dict( | ||
type='SimCCLabel', | ||
input_size=(256, 256), | ||
sigma=(5.66, 5.66), | ||
simcc_split_ratio=2.0, | ||
normalize=False, | ||
use_dark=False) | ||
|
||
# model settings | ||
model = dict( | ||
type='TopdownPoseEstimator', | ||
data_preprocessor=dict( | ||
type='PoseDataPreprocessor', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
bgr_to_rgb=True), | ||
backbone=dict( | ||
_scope_='mmdet', | ||
type='CSPNeXt', | ||
arch='P5', | ||
expand_ratio=0.5, | ||
deepen_factor=0.67, | ||
widen_factor=0.75, | ||
out_indices=(4, ), | ||
channel_attention=True, | ||
norm_cfg=dict(type='SyncBN'), | ||
act_cfg=dict(type='SiLU'), | ||
init_cfg=dict( | ||
type='Pretrained', | ||
prefix='backbone.', | ||
checkpoint='https://download.openmmlab.com/mmpose/v1/projects/' | ||
'rtmpose/cspnext-m_udp-aic-coco_210e-256x192-f2f7d6f6_20230130.pth' # noqa | ||
)), | ||
head=dict( | ||
type='RTMCCHead', | ||
in_channels=768, | ||
out_channels=21, | ||
input_size=codec['input_size'], | ||
in_featuremap_size=(8, 8), | ||
simcc_split_ratio=codec['simcc_split_ratio'], | ||
final_layer_kernel_size=7, | ||
gau_cfg=dict( | ||
hidden_dims=256, | ||
s=128, | ||
expansion_factor=2, | ||
dropout_rate=0., | ||
drop_path=0., | ||
act_fn='SiLU', | ||
use_rel_bias=False, | ||
pos_enc=False), | ||
loss=dict( | ||
type='KLDiscretLoss', | ||
use_target_weight=True, | ||
beta=10., | ||
label_softmax=True), | ||
decoder=codec), | ||
test_cfg=dict(flip_test=True, )) | ||
|
||
# base dataset settings | ||
dataset_type = 'CocoWholeBodyHandDataset' | ||
data_mode = 'topdown' | ||
data_root = 'data/' | ||
|
||
backend_args = dict(backend='local') | ||
|
||
# pipelines | ||
train_pipeline = [ | ||
dict(type='LoadImage', backend_args=backend_args), | ||
dict(type='GetBBoxCenterScale'), | ||
# dict(type='RandomHalfBody'), | ||
dict( | ||
type='RandomBBoxTransform', scale_factor=[0.5, 1.5], | ||
rotate_factor=180), | ||
dict(type='RandomFlip', direction='horizontal'), | ||
dict(type='TopdownAffine', input_size=codec['input_size']), | ||
dict(type='mmdet.YOLOXHSVRandomAug'), | ||
dict( | ||
type='Albumentation', | ||
transforms=[ | ||
dict(type='Blur', p=0.1), | ||
dict(type='MedianBlur', p=0.1), | ||
dict( | ||
type='CoarseDropout', | ||
max_holes=1, | ||
max_height=0.4, | ||
max_width=0.4, | ||
min_holes=1, | ||
min_height=0.2, | ||
min_width=0.2, | ||
p=1.0), | ||
]), | ||
dict(type='GenerateTarget', encoder=codec), | ||
dict(type='PackPoseInputs') | ||
] | ||
val_pipeline = [ | ||
dict(type='LoadImage', backend_args=backend_args), | ||
dict(type='GetBBoxCenterScale'), | ||
dict(type='TopdownAffine', input_size=codec['input_size']), | ||
dict(type='PackPoseInputs') | ||
] | ||
|
||
train_pipeline_stage2 = [ | ||
dict(type='LoadImage', backend_args=backend_args), | ||
dict(type='GetBBoxCenterScale'), | ||
# dict(type='RandomHalfBody'), | ||
dict( | ||
type='RandomBBoxTransform', | ||
shift_factor=0., | ||
scale_factor=[0.75, 1.25], | ||
rotate_factor=180), | ||
dict(type='RandomFlip', direction='horizontal'), | ||
dict(type='TopdownAffine', input_size=codec['input_size']), | ||
dict(type='mmdet.YOLOXHSVRandomAug'), | ||
dict( | ||
type='Albumentation', | ||
transforms=[ | ||
dict(type='Blur', p=0.2), | ||
dict(type='MedianBlur', p=0.2), | ||
dict( | ||
type='CoarseDropout', | ||
max_holes=1, | ||
max_height=0.4, | ||
max_width=0.4, | ||
min_holes=1, | ||
min_height=0.2, | ||
min_width=0.2, | ||
p=0.5), | ||
]), | ||
dict(type='GenerateTarget', encoder=codec), | ||
dict(type='PackPoseInputs') | ||
] | ||
|
||
# train datasets | ||
dataset_coco = dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='coco/annotations/coco_wholebody_train_v1.0.json', | ||
data_prefix=dict(img='detection/coco/train2017/'), | ||
pipeline=[], | ||
) | ||
|
||
dataset_onehand10k = dict( | ||
type='OneHand10KDataset', | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='onehand10k/annotations/onehand10k_train.json', | ||
data_prefix=dict(img='pose/OneHand10K/'), | ||
pipeline=[], | ||
) | ||
|
||
dataset_freihand = dict( | ||
type='FreiHandDataset', | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='freihand/annotations/freihand_train.json', | ||
data_prefix=dict(img='pose/FreiHand/'), | ||
pipeline=[], | ||
) | ||
|
||
dataset_rhd = dict( | ||
type='Rhd2DDataset', | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='rhd/annotations/rhd_train.json', | ||
data_prefix=dict(img='pose/RHD/'), | ||
pipeline=[ | ||
dict( | ||
type='KeypointConverter', | ||
num_keypoints=21, | ||
mapping=[ | ||
(0, 0), | ||
(1, 4), | ||
(2, 3), | ||
(3, 2), | ||
(4, 1), | ||
(5, 8), | ||
(6, 7), | ||
(7, 6), | ||
(8, 5), | ||
(9, 12), | ||
(10, 11), | ||
(11, 10), | ||
(12, 9), | ||
(13, 16), | ||
(14, 15), | ||
(15, 14), | ||
(16, 13), | ||
(17, 20), | ||
(18, 19), | ||
(19, 18), | ||
(20, 17), | ||
]) | ||
], | ||
) | ||
|
||
dataset_halpehand = dict( | ||
type='HalpeHandDataset', | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='halpe/annotations/halpe_train_v1.json', | ||
data_prefix=dict(img='pose/Halpe/hico_20160224_det/images/train2015/'), | ||
pipeline=[], | ||
) | ||
|
||
# data loaders | ||
train_dataloader = dict( | ||
batch_size=256, | ||
num_workers=10, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
dataset=dict( | ||
type='CombinedDataset', | ||
metainfo=dict( | ||
from_file='configs/_base_/datasets/coco_wholebody_hand.py'), | ||
datasets=[ | ||
dataset_coco, dataset_onehand10k, dataset_freihand, dataset_rhd, | ||
dataset_halpehand | ||
], | ||
pipeline=train_pipeline, | ||
test_mode=False, | ||
)) | ||
|
||
# test datasets | ||
val_coco = dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='coco/annotations/coco_wholebody_val_v1.0.json', | ||
data_prefix=dict(img='detection/coco/val2017/'), | ||
pipeline=[], | ||
) | ||
|
||
val_onehand10k = dict( | ||
type='OneHand10KDataset', | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='onehand10k/annotations/onehand10k_test.json', | ||
data_prefix=dict(img='pose/OneHand10K/'), | ||
pipeline=[], | ||
) | ||
|
||
val_freihand = dict( | ||
type='FreiHandDataset', | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='freihand/annotations/freihand_test.json', | ||
data_prefix=dict(img='pose/FreiHand/'), | ||
pipeline=[], | ||
) | ||
|
||
val_rhd = dict( | ||
type='Rhd2DDataset', | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='rhd/annotations/rhd_test.json', | ||
data_prefix=dict(img='pose/RHD/'), | ||
pipeline=[ | ||
dict( | ||
type='KeypointConverter', | ||
num_keypoints=21, | ||
mapping=[ | ||
(0, 0), | ||
(1, 4), | ||
(2, 3), | ||
(3, 2), | ||
(4, 1), | ||
(5, 8), | ||
(6, 7), | ||
(7, 6), | ||
(8, 5), | ||
(9, 12), | ||
(10, 11), | ||
(11, 10), | ||
(12, 9), | ||
(13, 16), | ||
(14, 15), | ||
(15, 14), | ||
(16, 13), | ||
(17, 20), | ||
(18, 19), | ||
(19, 18), | ||
(20, 17), | ||
]) | ||
], | ||
) | ||
|
||
val_halpehand = dict( | ||
type='HalpeHandDataset', | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='halpe/annotations/halpe_val_v1.json', | ||
data_prefix=dict(img='detection/coco/val2017/'), | ||
pipeline=[], | ||
) | ||
|
||
test_dataloader = dict( | ||
batch_size=32, | ||
num_workers=10, | ||
persistent_workers=True, | ||
drop_last=False, | ||
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), | ||
dataset=dict( | ||
type='CombinedDataset', | ||
metainfo=dict( | ||
from_file='configs/_base_/datasets/coco_wholebody_hand.py'), | ||
datasets=[ | ||
val_coco, val_onehand10k, val_freihand, val_rhd, val_halpehand | ||
], | ||
pipeline=val_pipeline, | ||
test_mode=True, | ||
)) | ||
|
||
val_dataloader = test_dataloader | ||
|
||
# hooks | ||
default_hooks = dict( | ||
checkpoint=dict(save_best='AUC', rule='greater', max_keep_ckpts=1)) | ||
|
||
custom_hooks = [ | ||
dict( | ||
type='EMAHook', | ||
ema_type='ExpMomentumEMA', | ||
momentum=0.0002, | ||
update_buffers=True, | ||
priority=49), | ||
dict( | ||
type='mmdet.PipelineSwitchHook', | ||
switch_epoch=max_epochs - stage2_num_epochs, | ||
switch_pipeline=train_pipeline_stage2) | ||
] | ||
|
||
# evaluators | ||
val_evaluator = [ | ||
dict(type='PCKAccuracy', thr=0.2), | ||
dict(type='AUC'), | ||
dict(type='EPE') | ||
] | ||
test_evaluator = val_evaluator |
Oops, something went wrong.