Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Support TIMMBackbone #7020

Merged
merged 6 commits into from
Feb 11, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 62 additions & 0 deletions configs/timm_example/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
# Timm Example

> [PyTorch Image Models](https://github.com/rwightman/pytorch-image-models)

<!-- [OTHERS] -->

## Abstract

Py**T**orch **Im**age **M**odels (`timm`) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.

<!--
<div align=center>
<img src="" height="400" />
</div>
-->

## Results and Models

### RetinaNet

| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:---------------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50 | pytorch | 1x | | | | [config](./retinanet_timm_tv_resnet50_fpn_1x_coco.py) | |
| EfficientNet-B1 | - | 1x | | | | [config](./retinanet_timm_efficientnet_b1_fpn_1x_coco.py) | |

## Usage

### Install additional requirements

MMDetection supports timm backbones via `TIMMBackbone`, a wrapper class in MMClassification.
Thus, you need to install `mmcls` in addition to timm.
If you have already installed requirements for mmdet, run

```shell
pip install 'dataclasses; python_version<"3.7"'
pip install timm
pip install 'mmcls>=0.20.0'
```

See [this document](https://mmclassification.readthedocs.io/en/latest/install.html) for the details of MMClassification installation.

### Edit config

* See example configs for basic usage.
* See the documents of [timm feature extraction](https://rwightman.github.io/pytorch-image-models/feature_extraction/#multi-scale-feature-maps-feature-pyramid) and [TIMMBackbone](https://mmclassification.readthedocs.io/en/latest/api.html#mmcls.models.backbones.TIMMBackbone) for details.
* Which feature map is output depends on the backbone.
Please check `backbone out_channels` and `backbone out_strides` in your log, and modify `model.neck.in_channels` and `model.backbone.out_indices` if necessary.
* If you use Vision Transformer models that do not support `features_only=True`, add `custom_hooks = []` to your config to disable `NumClassCheckHook`.

## Citation

```latex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```
20 changes: 20 additions & 0 deletions configs/timm_example/retinanet_timm_efficientnet_b1_fpn_1x_coco.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
_base_ = [
'../_base_/models/retinanet_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

# please install mmcls>=0.20.0
# import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
model = dict(
backbone=dict(
_delete_=True,
type='mmcls.TIMMBackbone',
model_name='efficientnet_b1',
features_only=True,
pretrained=True,
out_indices=(1, 2, 3, 4)),
neck=dict(in_channels=[24, 40, 112, 320]))

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
19 changes: 19 additions & 0 deletions configs/timm_example/retinanet_timm_tv_resnet50_fpn_1x_coco.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
_base_ = [
'../_base_/models/retinanet_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

# please install mmcls>=0.20.0
# import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
model = dict(
backbone=dict(
_delete_=True,
type='mmcls.TIMMBackbone',
model_name='tv_resnet50', # ResNet-50 with torchvision weights
features_only=True,
pretrained=True,
out_indices=(1, 2, 3, 4)))

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
1 change: 1 addition & 0 deletions requirements/optional.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,3 +2,4 @@ cityscapesscripts
imagecorruptions
scipy
sklearn
timm