-
Notifications
You must be signed in to change notification settings - Fork 9.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add zhihu link * update * update * update
- Loading branch information
1 parent
475fb3c
commit 6f2e6d1
Showing
3 changed files
with
58 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
## 中文解读文案汇总 | ||
|
||
### 1 官方解读文案 | ||
|
||
#### 1.1 框架解读 | ||
|
||
- **[轻松掌握 MMDetection 整体构建流程(一)](https://zhuanlan.zhihu.com/p/337375549)** | ||
- **[轻松掌握 MMDetection 整体构建流程(二)](https://zhuanlan.zhihu.com/p/341954021)** | ||
- **[轻松掌握 MMDetection 中 Head 流程](https://zhuanlan.zhihu.com/p/343433169)** | ||
|
||
#### 1.2 算法解读 | ||
|
||
- **[轻松掌握 MMDetection 中常用算法(一):RetinaNet 及配置详解](https://zhuanlan.zhihu.com/p/346198300)** | ||
- **[轻松掌握 MMDetection 中常用算法(二):Faster R-CNN|Mask R-CNN](https://zhuanlan.zhihu.com/p/349807581)** | ||
- [轻松掌握 MMDetection 中常用算法(三):FCOS](https://zhuanlan.zhihu.com/p/358056615) | ||
- [轻松掌握 MMDetection 中常用算法(四):ATSS](https://zhuanlan.zhihu.com/p/358125611) | ||
- [轻松掌握 MMDetection 中常用算法(五):Cascade R-CNN](https://zhuanlan.zhihu.com/p/360952172) | ||
- [轻松掌握 MMDetection 中常用算法(六):YOLOF](https://zhuanlan.zhihu.com/p/370758213) | ||
- [轻松掌握 MMDetection 中常用算法(七):CenterNet](https://zhuanlan.zhihu.com/p/374891478) | ||
- [轻松掌握 MMDetection 中常用算法(八):YOLACT](https://zhuanlan.zhihu.com/p/376347955) | ||
- [轻松掌握 MMDetection 中常用算法(九):AutoAssign](https://zhuanlan.zhihu.com/p/378581552) | ||
- [YOLOX 在 MMDetection 中复现全流程解析](https://zhuanlan.zhihu.com/p/398545304) | ||
- [喂喂喂!你可以减重了!小模型 - MMDetection 新增SSDLite 、 MobileNetV2YOLOV3 两大经典算法](https://zhuanlan.zhihu.com/p/402781143) | ||
|
||
#### 1.3 工具解读 | ||
|
||
- [OpenMMLab 中混合精度训练 AMP 的正确打开方式](https://zhuanlan.zhihu.com/p/375224982) | ||
- [小白都能看懂!手把手教你使用混淆矩阵分析目标检测](https://zhuanlan.zhihu.com/p/443499860) | ||
- [MMDetection 图像缩放 Resize 详细说明 OpenMMLab](https://zhuanlan.zhihu.com/p/381117525) | ||
- [拿什么拯救我的 4G 显卡](https://zhuanlan.zhihu.com/p/430123077) | ||
- [MMDet居然能用MMCls的Backbone?论配置文件的打开方式](https://zhuanlan.zhihu.com/p/436865195) | ||
|
||
#### 1.4 知乎问答 | ||
|
||
- [COCO数据集上1x模式下为什么不采用多尺度训练?](https://www.zhihu.com/question/462170786/answer/1915119662) | ||
- [MMDetection中SOTA论文源码中将训练过程中BN层的eval打开?](https://www.zhihu.com/question/471189603/answer/2195540892) | ||
- [基于PyTorch的MMDetection中训练的随机性来自何处?](https://www.zhihu.com/question/453511684/answer/1839683634) | ||
- [单阶段、双阶段、anchor-based、anchor-free 这四者之间有什么联系吗?](https://www.zhihu.com/question/428972054/answer/1619925296) | ||
- [目标检测的深度学习方法,有推荐的书籍或资料吗?](https://www.zhihu.com/question/391577080/answer/1612593817) | ||
- [大佬们,刚入学研究生,想入门目标检测,有什么学习路线可以入门的?](https://www.zhihu.com/question/343768934/answer/1612580715) | ||
- [目标检测领域还有什么可以做的?](https://www.zhihu.com/question/280703314/answer/1627885518) | ||
- [如何看待Transformer在CV上的应用前景,未来有可能替代CNN吗?](https://www.zhihu.com/question/437495132/answer/1686380553) | ||
- [MMDetection如何学习源码?](https://www.zhihu.com/question/451585041/answer/1832498963) | ||
- [如何具体上手实现目标检测呢?](https://www.zhihu.com/question/341401981/answer/1848561187) | ||
|
||
#### 1.5 其他 | ||
|
||
- **[不得不知的 MMDetection 学习路线(个人经验版)](https://zhuanlan.zhihu.com/p/369826931)** | ||
- [OpenMMLab 社区专访之 YOLOX 复现篇](https://zhuanlan.zhihu.com/p/405913343) | ||
|
||
### 2 社区解读文案 | ||
|
||
- [手把手带你实现经典检测网络 Mask R-CNN 的推理](https://zhuanlan.zhihu.com/p/414082071) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters