Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Config files of RDN #260

Merged
merged 2 commits into from
Apr 27, 2021
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
124 changes: 124 additions & 0 deletions configs/restorers/rdn/rdn_x2c64b16_g1_1000k_div2k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
exp_name = 'rdn_x2c64b16_g1_1000k_div2k'

scale = 2
# model settings
model = dict(
type='BasicRestorer',
generator=dict(
type='RDN',
in_channels=3,
out_channels=3,
mid_channels=64,
num_blocks=16,
upscale_factor=scale),
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'))
# model training and testing settings
train_cfg = None
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=scale)

# dataset settings
train_dataset_type = 'SRAnnotationDataset'
val_dataset_type = 'SRFolderDataset'
train_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Effect of 'unchanged': if it is grayscale image, you get 1 channel; if it has transparency, you get 4 channels; if it contains orientation metadata, it ignores.

Is this intended?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

No, this is not intended.

dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='PairedRandomCrop', gt_patch_size=64),
dict(
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,
direction='horizontal'),
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]
test_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]

data = dict(
workers_per_gpu=1,
train_dataloader=dict(samples_per_gpu=16, drop_last=True),
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='RepeatDataset',
times=1000,
dataset=dict(
type=train_dataset_type,
lq_folder='data/DIV2K/DIV2K_train_LR_bicubic/X2_sub',
gt_folder='data/DIV2K/DIV2K_train_HR_sub',
ann_file='data/DIV2K/meta_info_DIV2K800sub_GT.txt',
pipeline=train_pipeline,
scale=scale)),
val=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx2',
gt_folder='data/val_set5/Set5_mod12',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'),
test=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx2',
gt_folder='data/val_set5/Set5_mod12',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'))

# optimizer
optimizers = dict(generator=dict(type='Adam', lr=1e-4, betas=(0.9, 0.999)))

# learning policy
total_iters = 1000000
lr_config = dict(
policy='Step',
by_epoch=False,
step=[200000, 400000, 600000, 800000],
gamma=0.5)

checkpoint_config = dict(interval=5000, save_optimizer=True, by_epoch=False)
evaluation = dict(interval=5000, save_image=True, gpu_collect=True)
log_config = dict(
interval=100, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
visual_config = None

# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/{exp_name}'
load_from = None
resume_from = None
workflow = [('train', 1)]
124 changes: 124 additions & 0 deletions configs/restorers/rdn/rdn_x3c64b16_g1_1000k_div2k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
exp_name = 'rdn_x3c64b16_g1_1000k_div2k'

scale = 3
# model settings
model = dict(
type='BasicRestorer',
generator=dict(
type='RDN',
in_channels=3,
out_channels=3,
mid_channels=64,
num_blocks=16,
upscale_factor=scale),
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'))
# model training and testing settings
train_cfg = None
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=scale)

# dataset settings
train_dataset_type = 'SRAnnotationDataset'
val_dataset_type = 'SRFolderDataset'
train_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='PairedRandomCrop', gt_patch_size=96),
dict(
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,
direction='horizontal'),
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]
test_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]

data = dict(
workers_per_gpu=1,
train_dataloader=dict(samples_per_gpu=16, drop_last=True),
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='RepeatDataset',
times=1000,
dataset=dict(
type=train_dataset_type,
lq_folder='data/DIV2K/DIV2K_train_LR_bicubic/X3_sub',
gt_folder='data/DIV2K/DIV2K_train_HR_sub',
ann_file='data/DIV2K/meta_info_DIV2K800sub_GT.txt',
pipeline=train_pipeline,
scale=scale)),
val=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx3',
gt_folder='data/val_set5/Set5_mod12',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'),
test=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx3',
gt_folder='data/val_set5/Set5_mod12',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'))

# optimizer
optimizers = dict(generator=dict(type='Adam', lr=1e-4, betas=(0.9, 0.999)))

# learning policy
total_iters = 1000000
lr_config = dict(
policy='Step',
by_epoch=False,
step=[200000, 400000, 600000, 800000],
gamma=0.5)

checkpoint_config = dict(interval=5000, save_optimizer=True, by_epoch=False)
evaluation = dict(interval=5000, save_image=True, gpu_collect=True)
log_config = dict(
interval=100, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
visual_config = None

# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/{exp_name}'
load_from = None
resume_from = 'work_dirs/rdn_x3c64b16_g1_1000k_div2k/iter_315000.pth'
workflow = [('train', 1)]
124 changes: 124 additions & 0 deletions configs/restorers/rdn/rdn_x4c64b16_g1_1000k_div2k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
exp_name = 'rdn_x4c64b16_g1_100k_div2k'

scale = 4
# model settings
model = dict(
type='BasicRestorer',
generator=dict(
type='RDN',
in_channels=3,
out_channels=3,
mid_channels=64,
num_blocks=16,
upscale_factor=scale),
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'))
# model training and testing settings
train_cfg = None
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=scale)

# dataset settings
train_dataset_type = 'SRAnnotationDataset'
val_dataset_type = 'SRFolderDataset'
train_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='PairedRandomCrop', gt_patch_size=128),
dict(
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,
direction='horizontal'),
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]
test_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]

data = dict(
workers_per_gpu=1,
train_dataloader=dict(samples_per_gpu=16, drop_last=True),
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='RepeatDataset',
times=1000,
dataset=dict(
type=train_dataset_type,
lq_folder='data/DIV2K/DIV2K_train_LR_bicubic/X4_sub',
gt_folder='data/DIV2K/DIV2K_train_HR_sub',
ann_file='data/DIV2K/meta_info_DIV2K800sub_GT.txt',
pipeline=train_pipeline,
scale=scale)),
val=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx4',
gt_folder='data/val_set5/Set5_mod12',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'),
test=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx4',
gt_folder='data/val_set5/Set5_mod12',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'))

# optimizer
optimizers = dict(generator=dict(type='Adam', lr=1e-4, betas=(0.9, 0.999)))

# learning policy
total_iters = 1000000
lr_config = dict(
policy='Step',
by_epoch=False,
step=[200000, 400000, 600000, 800000],
gamma=0.5)

checkpoint_config = dict(interval=5000, save_optimizer=True, by_epoch=False)
evaluation = dict(interval=5000, save_image=True, gpu_collect=True)
log_config = dict(
interval=100, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
visual_config = None

# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/{exp_name}'
load_from = None
resume_from = None
workflow = [('train', 1)]