Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug] The dype error in Dreambooth. #1867

Closed
3 tasks done
wangqiang9 opened this issue May 19, 2023 · 1 comment · Fixed by #1879
Closed
3 tasks done

[Bug] The dype error in Dreambooth. #1867

wangqiang9 opened this issue May 19, 2023 · 1 comment · Fixed by #1879
Assignees
Labels
kind/bug something isn't working

Comments

@wangqiang9
Copy link
Contributor

Prerequisite

Task

I'm using the official example scripts/configs for the officially supported tasks/models/datasets.

Branch

main branch https://github.com/open-mmlab/mmagic

Environment

When mmaigc was first released, I reproduced the dreambooth and did not encounter this problem... But today, when I cloned the latest code experiment, I encountered a dtype-related problem. The complete error report is as follows:

/root/anaconda3/envs/mmagic/lib/python3.7/site-packages/diffusers/configuration_utils.py:135: FutureWarning: Accessing config attribute `num_train_timesteps` directly via 'DDPMScheduler' object attribute is deprecated. Please access 'num_train_timesteps' over 'DDPMScheduler's config object instead, e.g. 'scheduler.config.num_train_timesteps'.
  deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /root/modelscope/mmagic/tools/train.py:114 in <module>                                           │
│                                                                                                  │
│   111                                                                                            │
│   112                                                                                            │
│   113 if __name__ == '__main__':                                                                 │
│ ❱ 114 │   main()                                                                                 │
│   115                                                                                            │
│                                                                                                  │
│ /root/modelscope/mmagic/tools/train.py:107 in main                                               │
│                                                                                                  │
│   104 │   print_colored_log(f'Log directory: {runner._log_dir}')                                 │
│   105 │                                                                                          │
│   106 │   # start training                                                                       │
│ ❱ 107 │   runner.train()                                                                         │
│   108 │                                                                                          │
│   109 │   print_colored_log(f'Log saved under {runner._log_dir}')                                │
│   110 │   print_colored_log(f'Checkpoint saved under {cfg.work_dir}')                            │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/mmengine/runner/runner.py:1721 in train  │
│                                                                                                  │
│   1718 │   │   # This must be called **AFTER** model has been wrapped.                           │
│   1719 │   │   self._maybe_compile('train_step')                                                 │
│   1720 │   │                                                                                     │
│ ❱ 1721 │   │   model = self.train_loop.run()  # type: ignore                                     │
│   1722 │   │   self.call_hook('after_run')                                                       │
│   1723 │   │   return model                                                                      │
│   1724                                                                                           │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/mmengine/runner/loops.py:278 in run      │
│                                                                                                  │
│   275 │   │   │   self.runner.model.train()                                                      │
│   276 │   │   │                                                                                  │
│   277 │   │   │   data_batch = next(self.dataloader_iterator)                                    │
│ ❱ 278 │   │   │   self.run_iter(data_batch)                                                      │
│   279 │   │   │                                                                                  │
│   280 │   │   │   self._decide_current_val_interval()                                            │
│   281 │   │   │   if (self.runner.val_loop is not None                                           │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/mmengine/runner/loops.py:302 in run_iter │
│                                                                                                  │
│   299 │   │   # synchronization during gradient accumulation process.                            │
│   300 │   │   # outputs should be a dict of loss.                                                │
│   301 │   │   outputs = self.runner.model.train_step(                                            │
│ ❱ 302 │   │   │   data_batch, optim_wrapper=self.runner.optim_wrapper)                           │
│   303 │   │                                                                                      │
│   304 │   │   self.runner.call_hook(                                                             │
│   305 │   │   │   'after_train_iter',                                                            │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/mmengine/model/wrappers/seperate_distrib │
│ uted.py:102 in train_step                                                                        │
│                                                                                                  │
│    99 │   │   Returns:                                                                           │
│   100 │   │   │   Dict[str, torch.Tensor]: A dict of tensor for logging.                         │
│   101 │   │   """                                                                                │
│ ❱ 102 │   │   return self.module.train_step(data, optim_wrapper)                                 │
│   103 │                                                                                          │
│   104 │   def val_step(self, data: Union[dict, tuple, list]) -> list:                            │
│   105 │   │   """Gets the prediction of module during validation process.                        │
│                                                                                                  │
│ /root/modelscope/mmagic/mmagic/models/editors/dreambooth/dreambooth.py:293 in train_step         │
│                                                                                                  │
│   290 │   │   │   model_output = self.unet(                                                      │
│   291 │   │   │   │   noisy_latents.float(),                                                     │
│   292 │   │   │   │   timesteps,                                                                 │
│ ❱ 293 │   │   │   │   encoder_hidden_states=encoder_hidden_states.float())                       │
│   294 │   │   │   model_pred = model_output['sample']                                            │
│   295 │   │   │                                                                                  │
│   296 │   │   │   loss_dict = dict()                                                             │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/modules/module.py:1194 in       │
│ _call_impl                                                                                       │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/parallel/distributed.py:1040 in │
│ forward                                                                                          │
│                                                                                                  │
│   1037 │   │   │   │   # Notify joined ranks whether they should sync in backwards pass or not.  │
│   1038 │   │   │   │   self._check_global_requires_backward_grad_sync(is_joined_rank=False)      │
│   1039 │   │   │                                                                                 │
│ ❱ 1040 │   │   │   output = self._run_ddp_forward(*inputs, **kwargs)                             │
│   1041 │   │   │                                                                                 │
│   1042 │   │   │   # sync params according to location (before/after forward) user               │
│   1043 │   │   │   # specified as part of hook, if hook was specified.                           │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/parallel/distributed.py:1000 in │
│ _run_ddp_forward                                                                                 │
│                                                                                                  │
│    997 │   │   │   │   self.use_side_stream_for_tensor_copies                                    │
│    998 │   │   │   )                                                                             │
│    999 │   │   │   with self._inside_ddp_forward():                                              │
│ ❱ 1000 │   │   │   │   return module_to_run(*inputs[0], **kwargs[0])                             │
│   1001 │   │   else:                                                                             │
│   1002 │   │   │   with self._inside_ddp_forward():                                              │
│   1003 │   │   │   │   return module_to_run(*inputs, **kwargs)                                   │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/modules/module.py:1194 in       │
│ _call_impl                                                                                       │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /root/modelscope/mmagic/mmagic/models/archs/wrapper.py:179 in forward                            │
│                                                                                                  │
│   176 │   │   Returns:                                                                           │
│   177 │   │   │   Any: The output of wrapped module's forward function.                          │
│   178 │   │   """                                                                                │
│ ❱ 179 │   │   return self.model(*args, **kwargs)                                                 │
│   180                                                                                            │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/modules/module.py:1194 in       │
│ _call_impl                                                                                       │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/diffusers/models/unet_2d_condition.py:71 │
│ 8 in forward                                                                                     │
│                                                                                                  │
│   715 │   │   │   encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)           │
│   716 │   │                                                                                      │
│   717 │   │   # 2. pre-process                                                                   │
│ ❱ 718 │   │   sample = self.conv_in(sample)                                                      │
│   719 │   │                                                                                      │
│   720 │   │   # 3. down                                                                          │
│   721 │   │   down_block_res_samples = (sample,)                                                 │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/modules/module.py:1194 in       │
│ _call_impl                                                                                       │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/modules/conv.py:463 in forward  │
│                                                                                                  │
│    460 │   │   │   │   │   │   self.padding, self.dilation, self.groups)                         │
│    461 │                                                                                         │
│    462 │   def forward(self, input: Tensor) -> Tensor:                                           │
│ ❱  463 │   │   return self._conv_forward(input, self.weight, self.bias)                          │
│    464                                                                                           │
│    465 class Conv3d(_ConvNd):                                                                    │
│    466 │   __doc__ = r"""Applies a 3D convolution over an input signal composed of several inpu  │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/modules/conv.py:460 in          │
│ _conv_forward                                                                                    │
│                                                                                                  │
│    457 │   │   │   │   │   │   │   weight, bias, self.stride,                                    │
│    458 │   │   │   │   │   │   │   _pair(0), self.dilation, self.groups)                         │
│    459 │   │   return F.conv2d(input, weight, bias, self.stride,                                 │
│ ❱  460 │   │   │   │   │   │   self.padding, self.dilation, self.groups)                         │
│    461 │                                                                                         │
│    462 │   def forward(self, input: Tensor) -> Tensor:                                           │
│    463 │   │   return self._conv_forward(input, self.weight, self.bias)                          │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
RuntimeError: Input type (float) and bias type (c10::Half) should be the same
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 49302) of binary: /root/anaconda3/envs/mmagic/bin/python
Traceback (most recent call last):
  File "/root/anaconda3/envs/mmagic/lib/python3.7/runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
  File "/root/anaconda3/envs/mmagic/lib/python3.7/runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "/root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/distributed/launch.py", line 195, in <module>
    main()
  File "/root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/distributed/launch.py", line 191, in main
    launch(args)
  File "/root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/distributed/launch.py", line 176, in launch
    run(args)
  File "/root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/distributed/run.py", line 756, in run
    )(*cmd_args)
  File "/root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/distributed/launcher/api.py", line 248, in launch_agent
    failures=result.failures,
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 

Reproduces the problem - code sample

When mmaigc was first released, I reproduced the dreambooth and did not encounter this problem... But today, when I cloned the latest code experiment, I encountered a dtype-related problem. The complete error report is as follows:

╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /root/modelscope/mmagic/tools/train.py:114 in <module>                                           │
│                                                                                                  │
│   111                                                                                            │
│   112                                                                                            │
│   113 if __name__ == '__main__':                                                                 │
│ ❱ 114 │   main()                                                                                 │
│   115                                                                                            │
│                                                                                                  │
│ /root/modelscope/mmagic/tools/train.py:107 in main                                               │
│                                                                                                  │
│   104 │   print_colored_log(f'Log directory: {runner._log_dir}')                                 │
│   105 │                                                                                          │
│   106 │   # start training                                                                       │
│ ❱ 107 │   runner.train()                                                                         │
│   108 │                                                                                          │
│   109 │   print_colored_log(f'Log saved under {runner._log_dir}')                                │
│   110 │   print_colored_log(f'Checkpoint saved under {cfg.work_dir}')                            │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/mmengine/runner/runner.py:1721 in train  │
│                                                                                                  │
│   1718 │   │   # This must be called **AFTER** model has been wrapped.                           │
│   1719 │   │   self._maybe_compile('train_step')                                                 │
│   1720 │   │                                                                                     │
│ ❱ 1721 │   │   model = self.train_loop.run()  # type: ignore                                     │
│   1722 │   │   self.call_hook('after_run')                                                       │
│   1723 │   │   return model                                                                      │
│   1724                                                                                           │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/mmengine/runner/loops.py:278 in run      │
│                                                                                                  │
│   275 │   │   │   self.runner.model.train()                                                      │
│   276 │   │   │                                                                                  │
│   277 │   │   │   data_batch = next(self.dataloader_iterator)                                    │
│ ❱ 278 │   │   │   self.run_iter(data_batch)                                                      │
│   279 │   │   │                                                                                  │
│   280 │   │   │   self._decide_current_val_interval()                                            │
│   281 │   │   │   if (self.runner.val_loop is not None                                           │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/mmengine/runner/loops.py:302 in run_iter │
│                                                                                                  │
│   299 │   │   # synchronization during gradient accumulation process.                            │
│   300 │   │   # outputs should be a dict of loss.                                                │
│   301 │   │   outputs = self.runner.model.train_step(                                            │
│ ❱ 302 │   │   │   data_batch, optim_wrapper=self.runner.optim_wrapper)                           │
│   303 │   │                                                                                      │
│   304 │   │   self.runner.call_hook(                                                             │
│   305 │   │   │   'after_train_iter',                                                            │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/mmengine/model/wrappers/seperate_distrib │
│ uted.py:102 in train_step                                                                        │
│                                                                                                  │
│    99 │   │   Returns:                                                                           │
│   100 │   │   │   Dict[str, torch.Tensor]: A dict of tensor for logging.                         │
│   101 │   │   """                                                                                │
│ ❱ 102 │   │   return self.module.train_step(data, optim_wrapper)                                 │
│   103 │                                                                                          │
│   104 │   def val_step(self, data: Union[dict, tuple, list]) -> list:                            │
│   105 │   │   """Gets the prediction of module during validation process.                        │
│                                                                                                  │
│ /root/modelscope/mmagic/mmagic/models/editors/dreambooth/dreambooth.py:293 in train_step         │
│                                                                                                  │
│   290 │   │   │   model_output = self.unet(                                                      │
│   291 │   │   │   │   noisy_latents.float(),                                                     │
│   292 │   │   │   │   timesteps,                                                                 │
│ ❱ 293 │   │   │   │   encoder_hidden_states=encoder_hidden_states.float())                       │
│   294 │   │   │   model_pred = model_output['sample']                                            │
│   295 │   │   │                                                                                  │
│   296 │   │   │   loss_dict = dict()                                                             │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/modules/module.py:1194 in       │
│ _call_impl                                                                                       │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/parallel/distributed.py:1040 in │
│ forward                                                                                          │
│                                                                                                  │
│   1037 │   │   │   │   # Notify joined ranks whether they should sync in backwards pass or not.  │
│   1038 │   │   │   │   self._check_global_requires_backward_grad_sync(is_joined_rank=False)      │
│   1039 │   │   │                                                                                 │
│ ❱ 1040 │   │   │   output = self._run_ddp_forward(*inputs, **kwargs)                             │
│   1041 │   │   │                                                                                 │
│   1042 │   │   │   # sync params according to location (before/after forward) user               │
│   1043 │   │   │   # specified as part of hook, if hook was specified.                           │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/parallel/distributed.py:1000 in │
│ _run_ddp_forward                                                                                 │
│                                                                                                  │
│    997 │   │   │   │   self.use_side_stream_for_tensor_copies                                    │
│    998 │   │   │   )                                                                             │
│    999 │   │   │   with self._inside_ddp_forward():                                              │
│ ❱ 1000 │   │   │   │   return module_to_run(*inputs[0], **kwargs[0])                             │
│   1001 │   │   else:                                                                             │
│   1002 │   │   │   with self._inside_ddp_forward():                                              │
│   1003 │   │   │   │   return module_to_run(*inputs, **kwargs)                                   │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/modules/module.py:1194 in       │
│ _call_impl                                                                                       │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /root/modelscope/mmagic/mmagic/models/archs/wrapper.py:179 in forward                            │
│                                                                                                  │
│   176 │   │   Returns:                                                                           │
│   177 │   │   │   Any: The output of wrapped module's forward function.                          │
│   178 │   │   """                                                                                │
│ ❱ 179 │   │   return self.model(*args, **kwargs)                                                 │
│   180                                                                                            │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/modules/module.py:1194 in       │
│ _call_impl                                                                                       │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/diffusers/models/unet_2d_condition.py:71 │
│ 8 in forward                                                                                     │
│                                                                                                  │
│   715 │   │   │   encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)           │
│   716 │   │                                                                                      │
│   717 │   │   # 2. pre-process                                                                   │
│ ❱ 718 │   │   sample = self.conv_in(sample)                                                      │
│   719 │   │                                                                                      │
│   720 │   │   # 3. down                                                                          │
│   721 │   │   down_block_res_samples = (sample,)                                                 │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/modules/module.py:1194 in       │
│ _call_impl                                                                                       │
│                                                                                                  │
│   1191 │   │   # this function, and just call forward.                                           │
│   1192 │   │   if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o  │
│   1193 │   │   │   │   or _global_forward_hooks or _global_forward_pre_hooks):                   │
│ ❱ 1194 │   │   │   return forward_call(*input, **kwargs)                                         │
│   1195 │   │   # Do not call functions when jit is used                                          │
│   1196 │   │   full_backward_hooks, non_full_backward_hooks = [], []                             │
│   1197 │   │   if self._backward_hooks or _global_backward_hooks:                                │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/modules/conv.py:463 in forward  │
│                                                                                                  │
│    460 │   │   │   │   │   │   self.padding, self.dilation, self.groups)                         │
│    461 │                                                                                         │
│    462 │   def forward(self, input: Tensor) -> Tensor:                                           │
│ ❱  463 │   │   return self._conv_forward(input, self.weight, self.bias)                          │
│    464                                                                                           │
│    465 class Conv3d(_ConvNd):                                                                    │
│    466 │   __doc__ = r"""Applies a 3D convolution over an input signal composed of several inpu  │
│                                                                                                  │
│ /root/anaconda3/envs/mmagic/lib/python3.7/site-packages/torch/nn/modules/conv.py:460 in          │
│ _conv_forward                                                                                    │
│                                                                                                  │
│    457 │   │   │   │   │   │   │   weight, bias, self.stride,                                    │
│    458 │   │   │   │   │   │   │   _pair(0), self.dilation, self.groups)                         │
│    459 │   │   return F.conv2d(input, weight, bias, self.stride,                                 │
│ ❱  460 │   │   │   │   │   │   self.padding, self.dilation, self.groups)                         │
│    461 │                                                                                         │
│    462 │   def forward(self, input: Tensor) -> Tensor:                                           │
│    463 │   │   return self._conv_forward(input, self.weight, self.bias)                          │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
RuntimeError: Input type (float) and bias type (c10::Half) should be the same

Reproduces the problem - command or script

ditto

Reproduces the problem - error message

ditto

Additional information

No response

@wangqiang9 wangqiang9 added the kind/bug something isn't working label May 19, 2023
@wangqiang9
Copy link
Contributor Author

wangqiang9 commented May 19, 2023

I used the following command to solve this bug:

git checkout 0d37c51391

Indicates that the commit after this commit introduced this new problem.

https://github.com/open-mmlab/mmagic/commit/15c6dadefd82254d922b58408625b8065d4e043f

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
kind/bug something isn't working
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants