-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b5999e4
commit df46f0a
Showing
1 changed file
with
236 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,236 @@ | ||
from copy import deepcopy | ||
|
||
import pytest | ||
import torch | ||
import torch.nn as nn | ||
from torch.nn.parallel import DataParallel | ||
|
||
from mmedit.core.hooks import ExponentialMovingAverageHook | ||
|
||
|
||
class SimpleModule(nn.Module): | ||
|
||
def __init__(self): | ||
super().__init__() | ||
self.a = nn.Parameter(torch.tensor([1., 2.])) | ||
if torch.__version__ >= '1.7.0': | ||
self.register_buffer('b', torch.tensor([2., 3.]), persistent=True) | ||
self.register_buffer('c', torch.tensor([0., 1.]), persistent=False) | ||
else: | ||
self.register_buffer('b', torch.tensor([2., 3.])) | ||
self.c = torch.tensor([0., 1.]) | ||
|
||
|
||
class SimpleModel(nn.Module): | ||
|
||
def __init__(self) -> None: | ||
super().__init__() | ||
self.module_a = SimpleModule() | ||
self.module_b = SimpleModule() | ||
|
||
self.module_a_ema = SimpleModule() | ||
self.module_b_ema = SimpleModule() | ||
|
||
|
||
class SimpleModelNoEMA(nn.Module): | ||
|
||
def __init__(self) -> None: | ||
super().__init__() | ||
self.module_a = SimpleModule() | ||
self.module_b = SimpleModule() | ||
|
||
|
||
class SimpleRunner: | ||
|
||
def __init__(self): | ||
self.model = SimpleModel() | ||
self.iter = 0 | ||
|
||
|
||
class TestEMA: | ||
|
||
@classmethod | ||
def setup_class(cls): | ||
cls.default_config = dict( | ||
module_keys=('module_a_ema', 'module_b_ema'), | ||
interval=1, | ||
interp_cfg=dict(momentum=0.5)) | ||
cls.runner = SimpleRunner() | ||
|
||
@torch.no_grad() | ||
def test_ema_hook(self): | ||
cfg_ = deepcopy(self.default_config) | ||
cfg_['interval'] = -1 | ||
ema = ExponentialMovingAverageHook(**cfg_) | ||
ema.before_run(self.runner) | ||
ema.after_train_iter(self.runner) | ||
|
||
module_a = self.runner.model.module_a | ||
module_a_ema = self.runner.model.module_a_ema | ||
|
||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(ema_states['a'], torch.tensor([1., 2.])) | ||
|
||
ema = ExponentialMovingAverageHook(**self.default_config) | ||
ema.after_train_iter(self.runner) | ||
|
||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(ema_states['a'], torch.tensor([1., 2.])) | ||
|
||
module_a.b /= 2. | ||
module_a.a.data /= 2. | ||
module_a.c /= 2. | ||
|
||
self.runner.iter += 1 | ||
ema.after_train_iter(self.runner) | ||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(self.runner.model.module_a.a, | ||
torch.tensor([0.5, 1.])) | ||
assert torch.equal(ema_states['a'], torch.tensor([0.75, 1.5])) | ||
assert torch.equal(ema_states['b'], torch.tensor([1., 1.5])) | ||
assert 'c' not in ema_states | ||
|
||
# check for the validity of args | ||
with pytest.raises(AssertionError): | ||
_ = ExponentialMovingAverageHook(module_keys=['a']) | ||
|
||
with pytest.raises(AssertionError): | ||
_ = ExponentialMovingAverageHook(module_keys=('a')) | ||
|
||
with pytest.raises(AssertionError): | ||
_ = ExponentialMovingAverageHook( | ||
module_keys=('module_a_ema'), interp_mode='xxx') | ||
|
||
# test before run | ||
ema = ExponentialMovingAverageHook(**self.default_config) | ||
self.runner.model = SimpleModelNoEMA() | ||
self.runner.iter = 0 | ||
ema.before_run(self.runner) | ||
assert hasattr(self.runner.model, 'module_a_ema') | ||
|
||
module_a = self.runner.model.module_a | ||
module_a_ema = self.runner.model.module_a_ema | ||
|
||
ema.after_train_iter(self.runner) | ||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(ema_states['a'], torch.tensor([1., 2.])) | ||
|
||
module_a.b /= 2. | ||
module_a.a.data /= 2. | ||
module_a.c /= 2. | ||
|
||
self.runner.iter += 1 | ||
ema.after_train_iter(self.runner) | ||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(self.runner.model.module_a.a, | ||
torch.tensor([0.5, 1.])) | ||
assert torch.equal(ema_states['a'], torch.tensor([0.75, 1.5])) | ||
assert torch.equal(ema_states['b'], torch.tensor([1., 1.5])) | ||
assert 'c' not in ema_states | ||
|
||
# test ema with simple warm up | ||
runner = SimpleRunner() | ||
cfg_ = deepcopy(self.default_config) | ||
cfg_.update(dict(start_iter=3, interval=1)) | ||
ema = ExponentialMovingAverageHook(**cfg_) | ||
ema.before_run(runner) | ||
|
||
module_a = runner.model.module_a | ||
module_a_ema = runner.model.module_a_ema | ||
|
||
module_a.a.data /= 2. | ||
|
||
runner.iter += 1 | ||
ema.after_train_iter(runner) | ||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(runner.model.module_a.a, torch.tensor([0.5, 1.])) | ||
assert torch.equal(ema_states['a'], torch.tensor([0.5, 1.])) | ||
|
||
module_a.a.data /= 2 | ||
runner.iter += 2 | ||
ema.after_train_iter(runner) | ||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(runner.model.module_a.a, torch.tensor([0.25, 0.5])) | ||
assert torch.equal(ema_states['a'], torch.tensor([0.375, 0.75])) | ||
|
||
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') | ||
def test_ema_hook_cuda(self): | ||
ema = ExponentialMovingAverageHook(**self.default_config) | ||
cuda_runner = SimpleRunner() | ||
cuda_runner.model = cuda_runner.model.cuda() | ||
ema.after_train_iter(cuda_runner) | ||
|
||
module_a = cuda_runner.model.module_a | ||
module_a_ema = cuda_runner.model.module_a_ema | ||
|
||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(ema_states['a'], torch.tensor([1., 2.]).cuda()) | ||
|
||
module_a.b /= 2. | ||
module_a.a.data /= 2. | ||
module_a.c /= 2. | ||
|
||
cuda_runner.iter += 1 | ||
ema.after_train_iter(cuda_runner) | ||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(cuda_runner.model.module_a.a, | ||
torch.tensor([0.5, 1.]).cuda()) | ||
assert torch.equal(ema_states['a'], torch.tensor([0.75, 1.5]).cuda()) | ||
assert torch.equal(ema_states['b'], torch.tensor([1., 1.5]).cuda()) | ||
assert 'c' not in ema_states | ||
|
||
# test before run | ||
ema = ExponentialMovingAverageHook(**self.default_config) | ||
self.runner.model = SimpleModelNoEMA().cuda() | ||
self.runner.model = DataParallel(self.runner.model) | ||
self.runner.iter = 0 | ||
ema.before_run(self.runner) | ||
assert hasattr(self.runner.model.module, 'module_a_ema') | ||
|
||
module_a = self.runner.model.module.module_a | ||
module_a_ema = self.runner.model.module.module_a_ema | ||
|
||
ema.after_train_iter(self.runner) | ||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(ema_states['a'], torch.tensor([1., 2.]).cuda()) | ||
|
||
module_a.b /= 2. | ||
module_a.a.data /= 2. | ||
module_a.c /= 2. | ||
|
||
self.runner.iter += 1 | ||
ema.after_train_iter(self.runner) | ||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(self.runner.model.module.module_a.a, | ||
torch.tensor([0.5, 1.]).cuda()) | ||
assert torch.equal(ema_states['a'], torch.tensor([0.75, 1.5]).cuda()) | ||
assert torch.equal(ema_states['b'], torch.tensor([1., 1.5]).cuda()) | ||
assert 'c' not in ema_states | ||
|
||
# test ema with simple warm up | ||
runner = SimpleRunner() | ||
runner.model = runner.model.cuda() | ||
cfg_ = deepcopy(self.default_config) | ||
cfg_.update(dict(start_iter=3, interval=1)) | ||
ema = ExponentialMovingAverageHook(**cfg_) | ||
ema.before_run(runner) | ||
|
||
module_a = runner.model.module_a | ||
module_a_ema = runner.model.module_a_ema | ||
|
||
module_a.a.data /= 2. | ||
|
||
runner.iter += 1 | ||
ema.after_train_iter(runner) | ||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(runner.model.module_a.a, | ||
torch.tensor([0.5, 1.]).cuda()) | ||
assert torch.equal(ema_states['a'], torch.tensor([0.5, 1.]).cuda()) | ||
|
||
module_a.a.data /= 2 | ||
runner.iter += 2 | ||
ema.after_train_iter(runner) | ||
ema_states = module_a_ema.state_dict() | ||
assert torch.equal(runner.model.module_a.a, | ||
torch.tensor([0.25, 0.5]).cuda()) | ||
assert torch.equal(ema_states['a'], torch.tensor([0.375, 0.75]).cuda()) |