-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* [Feature] Add TTSR. * Add test * Fix Co-authored-by: liyinshuo <[email protected]>
- Loading branch information
Showing
3 changed files
with
331 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
import numbers | ||
import os.path as osp | ||
|
||
import mmcv | ||
import torch | ||
|
||
from mmedit.core import tensor2img | ||
from ..builder import build_backbone, build_component, build_loss | ||
from ..registry import MODELS | ||
from .basic_restorer import BasicRestorer | ||
|
||
|
||
@MODELS.register_module() | ||
class TTSR(BasicRestorer): | ||
"""TTSR model for Reference-based Image Super-Resolution. | ||
Paper: Learning Texture Transformer Network for Image Super-Resolution. | ||
Args: | ||
generator (dict): Config for the generator. | ||
extractor (dict): Config for the extractor. | ||
transformer (dict): Config for the transformer. | ||
pixel_loss (dict): Config for the pixel loss. | ||
train_cfg (dict): Config for train. Default: None. | ||
test_cfg (dict): Config for testing. Default: None. | ||
pretrained (str): Path for pretrained model. Default: None. | ||
""" | ||
|
||
def __init__(self, | ||
generator, | ||
extractor, | ||
transformer, | ||
pixel_loss, | ||
train_cfg=None, | ||
test_cfg=None, | ||
pretrained=None): | ||
super(BasicRestorer, self).__init__() | ||
|
||
self.train_cfg = train_cfg | ||
self.test_cfg = test_cfg | ||
|
||
# model | ||
self.generator = build_backbone(generator) | ||
self.transformer = build_component(transformer) | ||
self.extractor = build_component(extractor) | ||
|
||
# loss | ||
self.pixel_loss = build_loss(pixel_loss) | ||
|
||
# pretrained | ||
self.init_weights(pretrained) | ||
|
||
def forward_dummy(self, lq, lq_up, ref, ref_downup, only_pred=True): | ||
"""Forward of networks. | ||
Args: | ||
lq (Tensor): LQ image. | ||
lq_up (Tensor): Upsampled LQ image. | ||
ref (Tensor): Reference image. | ||
ref_downup (Tensor): Image generated by sequentially applying | ||
bicubic down-sampling and up-sampling on reference image. | ||
only_pred (bool): Only return predicted results or not. | ||
Default: True. | ||
Returns: | ||
pred (Tensor): Predicted super-resolution results (n, 3, 4h, 4w). | ||
s (Tensor): Soft-Attention tensor with shape (n, 1, h, w). | ||
t_level3 (Tensor): Transformed HR texture T in level3. | ||
(n, 4c, h, w) | ||
t_level2 (Tensor): Transformed HR texture T in level2. | ||
(n, 2c, 2h, 2w) | ||
t_level1 (Tensor): Transformed HR texture T in level1. | ||
(n, c, 4h, 4w) | ||
""" | ||
|
||
_, _, lq_up_level3 = self.extractor(lq_up) | ||
_, _, ref_downup_level3 = self.extractor(ref_downup) | ||
ref_level1, ref_level2, ref_level3 = self.extractor(ref) | ||
|
||
s, t_level3, t_level2, t_level1 = self.transformer( | ||
lq_up_level3, ref_downup_level3, ref_level1, ref_level2, | ||
ref_level3) | ||
|
||
pred = self.generator(lq, s, t_level3, t_level2, t_level1) | ||
|
||
if only_pred: | ||
return pred | ||
return pred, s, t_level3, t_level2, t_level1 | ||
|
||
def forward(self, lq, gt=None, test_mode=False, **kwargs): | ||
"""Forward function. | ||
Args: | ||
lq (Tensor): Input lq images. | ||
gt (Tensor): Ground-truth image. Default: None. | ||
test_mode (bool): Whether in test mode or not. Default: False. | ||
kwargs (dict): Other arguments. | ||
""" | ||
|
||
if test_mode: | ||
return self.forward_test(lq, gt=gt, **kwargs) | ||
|
||
return self.forward_dummy(lq, **kwargs) | ||
|
||
def train_step(self, data_batch, optimizer): | ||
"""Train step. | ||
Args: | ||
data_batch (dict): A batch of data, which requires | ||
'lq', 'gt', 'lq_up', 'ref', 'ref_downup' | ||
optimizer (obj): Optimizer. | ||
Returns: | ||
dict: Returned output, which includes: | ||
log_vars, num_samples, results (lq, gt and pred). | ||
""" | ||
# data | ||
lq = data_batch['lq'] | ||
lq_up = data_batch['lq_up'] | ||
gt = data_batch['gt'] | ||
ref = data_batch['ref'] | ||
ref_downup = data_batch['ref_downup'] | ||
|
||
# generate | ||
pred = self.forward_dummy(lq, lq_up, ref, ref_downup) | ||
|
||
# loss | ||
losses = dict() | ||
|
||
losses['loss_pix'] = self.pixel_loss(pred, gt) | ||
|
||
# parse loss | ||
loss, log_vars = self.parse_losses(losses) | ||
|
||
# optimize | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
log_vars.pop('loss') # remove the unnecessary 'loss' | ||
outputs = dict( | ||
log_vars=log_vars, | ||
num_samples=len(gt.data), | ||
results=dict( | ||
lq=lq.cpu(), gt=gt.cpu(), ref=ref.cpu(), output=pred.cpu())) | ||
|
||
return outputs | ||
|
||
def forward_test(self, | ||
lq, | ||
lq_up, | ||
ref, | ||
ref_downup, | ||
gt=None, | ||
meta=None, | ||
save_image=False, | ||
save_path=None, | ||
iteration=None): | ||
"""Testing forward function. | ||
Args: | ||
lq (Tensor): LQ image | ||
gt (Tensor): GT image | ||
lq_up (Tensor): Upsampled LQ image | ||
ref (Tensor): Reference image | ||
ref_downup (Tensor): Image generated by sequentially applying | ||
bicubic down-sampling and up-sampling on reference image | ||
meta (list[dict]): Meta data, such as path of GT file. | ||
Default: None. | ||
save_image (bool): Whether to save image. Default: False. | ||
save_path (str): Path to save image. Default: None. | ||
iteration (int): Iteration for the saving image name. | ||
Default: None. | ||
Returns: | ||
dict: Output results, which contain either key(s) | ||
1. 'eval_result'. | ||
2. 'lq', 'pred'. | ||
3. 'lq', 'pred', 'gt'. | ||
""" | ||
|
||
# generator | ||
with torch.no_grad(): | ||
pred = self.forward_dummy( | ||
lq=lq, lq_up=lq_up, ref=ref, ref_downup=ref_downup) | ||
|
||
pred = (pred + 1.) / 2. | ||
if gt is not None: | ||
gt = (gt + 1.) / 2. | ||
|
||
if self.test_cfg is not None and self.test_cfg.get('metrics', None): | ||
assert gt is not None, ( | ||
'evaluation with metrics must have gt images.') | ||
results = dict(eval_result=self.evaluate(pred, gt)) | ||
else: | ||
results = dict(lq=lq.cpu(), output=pred.cpu()) | ||
if gt is not None: | ||
results['gt'] = gt.cpu() | ||
|
||
# save image | ||
if save_image: | ||
if 'gt_path' in meta[0]: | ||
the_path = meta[0]['gt_path'] | ||
else: | ||
the_path = meta[0]['lq_path'] | ||
folder_name = osp.splitext(osp.basename(the_path))[0] | ||
if isinstance(iteration, numbers.Number): | ||
save_path = osp.join(save_path, folder_name, | ||
f'{folder_name}-{iteration + 1:06d}.png') | ||
elif iteration is None: | ||
save_path = osp.join(save_path, f'{folder_name}.png') | ||
else: | ||
raise ValueError('iteration should be number or None, ' | ||
f'but got {type(iteration)}') | ||
mmcv.imwrite(tensor2img(pred), save_path) | ||
|
||
return results | ||
|
||
def init_weights(self, pretrained=None, strict=True): | ||
"""Init weights for models. | ||
Args: | ||
pretrained (str, optional): Path for pretrained weights. If given | ||
None, pretrained weights will not be loaded. Defaults to None. | ||
strict (boo, optional): Whether strictly load the pretrained model. | ||
Defaults to True. | ||
""" | ||
if isinstance(pretrained, str): | ||
if self.generator: | ||
self.generator.init_weights(pretrained, strict) | ||
if self.extractor: | ||
self.extractor.init_weights(pretrained, strict) | ||
if self.transformer: | ||
self.transformer.init_weights(pretrained, strict) | ||
elif pretrained is not None: | ||
raise TypeError('"pretrained" must be a str or None. ' | ||
f'But received {type(pretrained)}.') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters