Skip to content

Commit

Permalink
Add config files of RDN.
Browse files Browse the repository at this point in the history
  • Loading branch information
liyinshuo committed Apr 18, 2021
1 parent e2a2892 commit 831798f
Show file tree
Hide file tree
Showing 3 changed files with 372 additions and 0 deletions.
124 changes: 124 additions & 0 deletions configs/restorers/rdn/rdn_x2c64b16_g1_1000k_div2k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
exp_name = 'rdn_x2c64b16_g1_1000k_div2k'

scale = 2
# model settings
model = dict(
type='BasicRestorer',
generator=dict(
type='RDN',
in_channels=3,
out_channels=3,
mid_channels=64,
num_blocks=16,
upscale_factor=scale),
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'))
# model training and testing settings
train_cfg = None
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=scale)

# dataset settings
train_dataset_type = 'SRAnnotationDataset'
val_dataset_type = 'SRFolderDataset'
train_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='PairedRandomCrop', gt_patch_size=64),
dict(
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,
direction='horizontal'),
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]
test_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]

data = dict(
workers_per_gpu=1,
train_dataloader=dict(samples_per_gpu=16, drop_last=True),
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='RepeatDataset',
times=1000,
dataset=dict(
type=train_dataset_type,
lq_folder='data/DIV2K/DIV2K_train_LR_bicubic/X2_sub',
gt_folder='data/DIV2K/DIV2K_train_HR_sub',
ann_file='data/DIV2K/meta_info_DIV2K800sub_GT.txt',
pipeline=train_pipeline,
scale=scale)),
val=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx2',
gt_folder='data/val_set5/Set5_mod12',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'),
test=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx2',
gt_folder='data/val_set5/Set5_mod12',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'))

# optimizer
optimizers = dict(generator=dict(type='Adam', lr=1e-4, betas=(0.9, 0.999)))

# learning policy
total_iters = 1000000
lr_config = dict(
policy='Step',
by_epoch=False,
step=[200000, 400000, 600000, 800000],
gamma=0.5)

checkpoint_config = dict(interval=5000, save_optimizer=True, by_epoch=False)
evaluation = dict(interval=5000, save_image=True, gpu_collect=True)
log_config = dict(
interval=100, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
visual_config = None

# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/{exp_name}'
load_from = None
resume_from = None
workflow = [('train', 1)]
124 changes: 124 additions & 0 deletions configs/restorers/rdn/rdn_x3c64b16_g1_1000k_div2k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
exp_name = 'rdn_x3c64b16_g1_1000k_div2k'

scale = 3
# model settings
model = dict(
type='BasicRestorer',
generator=dict(
type='RDN',
in_channels=3,
out_channels=3,
mid_channels=64,
num_blocks=16,
upscale_factor=scale),
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'))
# model training and testing settings
train_cfg = None
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=scale)

# dataset settings
train_dataset_type = 'SRAnnotationDataset'
val_dataset_type = 'SRFolderDataset'
train_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='PairedRandomCrop', gt_patch_size=96),
dict(
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,
direction='horizontal'),
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]
test_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]

data = dict(
workers_per_gpu=1,
train_dataloader=dict(samples_per_gpu=16, drop_last=True),
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='RepeatDataset',
times=1000,
dataset=dict(
type=train_dataset_type,
lq_folder='data/DIV2K/DIV2K_train_LR_bicubic/X3_sub',
gt_folder='data/DIV2K/DIV2K_train_HR_sub',
ann_file='data/DIV2K/meta_info_DIV2K800sub_GT.txt',
pipeline=train_pipeline,
scale=scale)),
val=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx3',
gt_folder='data/val_set5/Set5_mod12',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'),
test=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx3',
gt_folder='data/val_set5/Set5_mod12',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'))

# optimizer
optimizers = dict(generator=dict(type='Adam', lr=1e-4, betas=(0.9, 0.999)))

# learning policy
total_iters = 1000000
lr_config = dict(
policy='Step',
by_epoch=False,
step=[200000, 400000, 600000, 800000],
gamma=0.5)

checkpoint_config = dict(interval=5000, save_optimizer=True, by_epoch=False)
evaluation = dict(interval=5000, save_image=True, gpu_collect=True)
log_config = dict(
interval=100, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
visual_config = None

# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/{exp_name}'
load_from = None
resume_from = 'work_dirs/rdn_x3c64b16_g1_1000k_div2k/iter_315000.pth'
workflow = [('train', 1)]
124 changes: 124 additions & 0 deletions configs/restorers/rdn/rdn_x4c64b16_g1_1000k_div2k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
exp_name = 'rdn_x4c64b16_g1_100k_div2k'

scale = 4
# model settings
model = dict(
type='BasicRestorer',
generator=dict(
type='RDN',
in_channels=3,
out_channels=3,
mid_channels=64,
num_blocks=16,
upscale_factor=scale),
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'))
# model training and testing settings
train_cfg = None
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=scale)

# dataset settings
train_dataset_type = 'SRAnnotationDataset'
val_dataset_type = 'SRFolderDataset'
train_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='PairedRandomCrop', gt_patch_size=128),
dict(
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,
direction='horizontal'),
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]
test_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]

data = dict(
workers_per_gpu=1,
train_dataloader=dict(samples_per_gpu=16, drop_last=True),
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='RepeatDataset',
times=1000,
dataset=dict(
type=train_dataset_type,
lq_folder='data/DIV2K/DIV2K_train_LR_bicubic/X4_sub',
gt_folder='data/DIV2K/DIV2K_train_HR_sub',
ann_file='data/DIV2K/meta_info_DIV2K800sub_GT.txt',
pipeline=train_pipeline,
scale=scale)),
val=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx4',
gt_folder='data/val_set5/Set5_mod12',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'),
test=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx4',
gt_folder='data/val_set5/Set5_mod12',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'))

# optimizer
optimizers = dict(generator=dict(type='Adam', lr=1e-4, betas=(0.9, 0.999)))

# learning policy
total_iters = 1000000
lr_config = dict(
policy='Step',
by_epoch=False,
step=[200000, 400000, 600000, 800000],
gamma=0.5)

checkpoint_config = dict(interval=5000, save_optimizer=True, by_epoch=False)
evaluation = dict(interval=5000, save_image=True, gpu_collect=True)
log_config = dict(
interval=100, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
visual_config = None

# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/{exp_name}'
load_from = None
resume_from = None
workflow = [('train', 1)]

0 comments on commit 831798f

Please sign in to comment.