Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Simplify GatherOp when its inputs are dimensions #1755

Merged
merged 4 commits into from
Oct 4, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 57 additions & 0 deletions src/Transform/ONNX/SimplifyShapeRelatedOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@ Now, it's straighforward to update the output shape of Reshape from

#include "src/Dialect/ONNX/DialectBuilder.hpp"
#include "src/Dialect/ONNX/ONNXOps.hpp"
#include "src/Dialect/ONNX/ONNXOpsHelper.hpp"
#include "src/Dialect/ONNX/ShapeInference/ONNXShapeHelper.hpp"
#include "src/Pass/Passes.hpp"
#include "src/Support/TypeUtilities.hpp"
Expand Down Expand Up @@ -255,6 +256,61 @@ class PassThroughCastPattern : public OpRewritePattern<ONNXCastOp> {
}
};

/// Simplify ONNXGatherOp into ONNXConcatOp.
class PassThroughGatherPattern : public OpRewritePattern<ONNXGatherOp> {
public:
using OpRewritePattern<ONNXGatherOp>::OpRewritePattern;
LogicalResult matchAndRewrite(
ONNXGatherOp gatherOp, PatternRewriter &rewriter) const override {
// Get basic op info.
Location loc = gatherOp.getLoc();
Value input = gatherOp.data();
Value indices = gatherOp.indices();
int64_t axis = gatherOp.axis();

// Match
// Gather on axis 0.
if (axis != 0)
return failure();
// Input is defined by Concat of dims, so it has rank of 1.
if (!areDimsFromConcat(input))
return failure();

// Indices are constants.
if (!definedBy<ONNXConstantOp>(indices))
return failure();
DenseElementsAttr indicesAttr =
getDenseElementAttributeFromONNXValue(indices);
if (!indicesAttr)
return failure();

// Rewrite
MultiDialectBuilder<OnnxBuilder> create(rewriter, loc);
int64_t inputRank = getRank(input.getType());

// Compute integer indices.
SmallVector<int64_t, 4> indicesI64;
for (auto element : indicesAttr.getValues<IntegerAttr>()) {
int64_t axis = element.getInt();
axis = (axis < 0) ? (axis + inputRank) : axis;
indicesI64.emplace_back(axis);
}

// Replace GatherOp by ConcatOp of specific dimensions.
SmallVector<Value, 4> dims;
getDims(input, dims);
SmallVector<Value> castedDims;
SmallVector<Value> gatherDims;
for (int64_t i : indicesI64)
gatherDims.emplace_back(dims[i]);

Value replacedValue = emitConcatOpForDims(create, gatherDims);

rewriter.replaceOp(gatherOp, replacedValue);
return success();
}
};

/// Simplify ONNXSliceOp into ONNXConcatOp.
class PassThroughSlicePattern : public OpRewritePattern<ONNXSliceOp> {
public:
Expand Down Expand Up @@ -472,6 +528,7 @@ void SimplifyShapeRelatedOpsPass::topDownShapeSimplification(
// Pass the dimensions through operations of interest.
patterns.insert<onnx_mlir::PassThroughCastPattern>(context);
patterns.insert<onnx_mlir::PassThroughConcatPattern>(context);
patterns.insert<onnx_mlir::PassThroughGatherPattern>(context);
patterns.insert<onnx_mlir::PassThroughSlicePattern>(context);

// Update Reshape's output shape using inferred dimensions.
Expand Down
21 changes: 21 additions & 0 deletions test/mlir/onnx/onnx_simplify_shape_related_ops.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,27 @@ func.func @test_pass_dims_through_concat(%arg0: tensor<?x256xi64>) -> (tensor<4x

// -----

func.func @test_pass_dims_through_cast(%arg0: tensor<?x?x200xf32>) -> tensor<2xi64> {
%0 = "onnx.Constant"() {value = dense<[0, 1]> : tensor<2xi64>} : () -> tensor<2xi64>
%1 = "onnx.Dim"(%arg0) {axis = 0 : si64} : (tensor<?x?x200xf32>) -> tensor<1xi64>
%2 = "onnx.Dim"(%arg0) {axis = 1 : si64} : (tensor<?x?x200xf32>) -> tensor<1xi64>
%3 = "onnx.Constant"() {value = dense<200> : tensor<1xi64>} : () -> tensor<1xi64>
%4 = "onnx.Concat"(%1, %2, %3) {axis = 0 : si64} : (tensor<1xi64>, tensor<1xi64>, tensor<1xi64>) -> tensor<3xi64>
%5 = "onnx.Gather"(%4, %0) {axis = 0 : si64} : (tensor<3xi64>, tensor<2xi64>) -> tensor<2xi64>
return %5 : tensor<2xi64>

// mlir2FileCheck.py
// CHECK-LABEL: func.func @test_pass_dims_through_cast
// CHECK-SAME: ([[PARAM_0_:%.+]]: tensor<?x?x200xf32>) -> tensor<2xi64> {
// CHECK-DAG: [[VAR_0_:%.+]] = "onnx.Dim"([[PARAM_0_]]) {axis = 0 : si64} : (tensor<?x?x200xf32>) -> tensor<1xi64>
// CHECK-DAG: [[VAR_1_:%.+]] = "onnx.Dim"([[PARAM_0_]]) {axis = 1 : si64} : (tensor<?x?x200xf32>) -> tensor<1xi64>
// CHECK: [[VAR_2_:%.+]] = "onnx.Concat"([[VAR_0_]], [[VAR_1_]]) {axis = 0 : si64} : (tensor<1xi64>, tensor<1xi64>) -> tensor<2xi64>
// CHECK: return [[VAR_2_]] : tensor<2xi64>
// CHECK: }
}

// -----

func.func @test_pass_dims_through_slice(%arg0: tensor<?x256xi64>) -> (tensor<1xi64>) {
%0 = "onnx.Dim"(%arg0) {axis = 0 : si64} : (tensor<?x256xi64>) -> tensor<1xi64>
%1 = "onnx.Constant"() {value = dense<256> : tensor<1xi64>} : () -> tensor<1xi64>
Expand Down