Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
omegaiota authored Oct 17, 2022
1 parent 1ef02a3 commit e04eb66
Showing 1 changed file with 20 additions and 16 deletions.
36 changes: 20 additions & 16 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -65,20 +65,24 @@ Simulations are saved to `output/` directory of the root folder.
Feel free to contact me or creating a Github issue if you have questions regarding setting up the repository, running examples or setting up new examples.
### Citation
Please consider citing our research if your find our research helpful:
@article{li2022diffcloth,
author = {Li, Yifei and Du, Tao and Wu, Kui and Xu, Jie and Matusik, Wojciech},
title = {DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact},
year = {2022},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
issn = {0730-0301},
url = {https://doi.org/10.1145/3527660},
doi = {10.1145/3527660},
abstract = {Cloth simulation has wide applications in computer animation, garment design, and robot-assisted dressing. This work presents a differentiable cloth simulator whose additional gradient information facilitates cloth-related applications. Our differentiable simulator extends a state-of-the-art cloth simulator based on Projective Dynamics (PD) and with dry frictional contact [Ly et al. 2020]},
note = {Just Accepted},
journal = {ACM Trans. Graph.},
month = {mar},
keywords = {cloth simulation, differentiable simulation, Projective Dynamics}
Please consider citing our paper if your find our research helpful:
@article{Li2022diffcloth,
author = {Li, Yifei and Du, Tao and Wu, Kui and Xu, Jie and Matusik, Wojciech},
title = {DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact},
year = {2022},
issue_date = {February 2023},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {42},
number = {1},
issn = {0730-0301},
url = {https://doi.org/10.1145/3527660},
doi = {10.1145/3527660},
abstract = {Cloth simulation has wide applications in computer animation, garment design, and robot-assisted dressing. This work presents a differentiable cloth simulator whose additional gradient information facilitates cloth-related applications. Our differentiable simulator extends a state-of-the-art cloth simulator based on Projective Dynamics (PD) and with dry frictional contact [Ly et al. 2020]. We draw inspiration from previous work [Du et al. 2021] to propose a fast and novel method for deriving gradients in PD-based cloth simulation with dry frictional contact. Furthermore, we conduct a comprehensive analysis and evaluation of the usefulness of gradients in contact-rich cloth simulation. Finally, we demonstrate the efficacy of our simulator in a number of downstream applications, including system identification, trajectory optimization for assisted dressing, closed-loop control, inverse design, and real-to-sim transfer. We observe a substantial speedup obtained from using our gradient information in solving most of these applications.},
journal = {ACM Trans. Graph.},
month = {oct},
articleno = {2},
numpages = {20},
keywords = {differentiable simulation, cloth simulation, Projective Dynamics}
}

0 comments on commit e04eb66

Please sign in to comment.