Skip to content

Installing CUDA toolkit, cuDNN, Torchlib C++, cmake, VS code and OpenCV for machine learning

Notifications You must be signed in to change notification settings

ollewelin/torchlib-opencv-gpu

Repository files navigation

Installing Ubuntu18.04, CUDA toolkit 10.1, cuDNN, Torchlib C++, cmake, VS code and OpenCV for machine learning.

Youtube video serie 1,2,3

Part 1 video: https://youtu.be/Ov5vyJR55iQ

Part 2 video: https://youtu.be/D7WRwYmIUfE

Part 3 video: https://youtu.be/HvolUKvMrxI

Install CUDA toolkit and cuDNN

https://medium.com/@stephengregory_69986/installing-cuda-10-1-on-ubuntu-20-04-e562a5e724a0#fa83

Condensed commands for install CUDA 10.1 + cuDNN

Clean

sudo rm /etc/apt/sources.list.d/cuda*
sudo apt remove --autoremove nvidia-cuda-toolkit
sudo apt remove --autoremove nvidia-*

sudo apt-get purge nvidia*
sudo apt-get autoremove
sudo apt-get autoclean

Installation

sudo apt update
sudo add-apt-repository ppa:graphics-drivers

sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub

sudo bash -c 'echo "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/cuda.list'

sudo bash -c 'echo "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/cuda_learn.list'

sudo apt update
sudo apt install cuda-10-1
sudo apt install libcudnn7

Or last command testing 2021-10-19, versions CUDA 10.2 and cuDNN 8

sudo apt install cuda-10-2
sudo apt install libcudnn8

Modify the ~/.Profile file with extended path 10.1 and 10.2

Start a terminal Ctrl-Alt-T

$ sudo apt-get update
$ sudo apt-get install vim
$ sudo vim ~/.profile

Edit file and change A convinent guide how to use vim editor: https://coderwall.com/p/adv71w/basic-vim-commands-for-getting-started

# set PATH for cuda 10.1 installation
if [ -d "/usr/local/cuda-10.1/bin/" ]; then
    export PATH=/usr/local/cuda-10.1/bin${PATH:+:${PATH}}
    export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
    export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
fi

Or last command testing 2021-10-19, versions CUDA 10.2 and cuDNN 8

# set PATH for cuda 10.2 installation
	if [ -d "/usr/local/cuda-10.2/bin/" ]; then
		export PATH=/usr/local/cuda-10.2/bin${PATH:+:${PATH}}
		export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
fi

reboot

$ sudo reboot

Check CUDA and cuDNN installation

Check Nvidia dirver

$ nvidia-smi

Example answer:

Tue Mar  2 19:19:42 2021       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.39       Driver Version: 460.39       CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  GeForce GTX 1650    Off  | 00000000:01:00.0 Off |                  N/A |
| N/A   42C    P8     3W /  N/A |      5MiB /  3911MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A      1510      G   /usr/lib/xorg/Xorg                  4MiB |
+-----------------------------------------------------------------------------+

Check CUDA

$ nvcc --version

Example answer:

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Sun_Jul_28_19:07:16_PDT_2019
Cuda compilation tools, release 10.1, V10.1.243

Or last command testing 2021-10-19, versions CUDA 10.2 and cuDNN 8

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Wed_Oct_23_19:24:38_PDT_2019
Cuda compilation tools, release 10.2, V10.2.89

2.3.2. Debian Installation

https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

Download cuDNN from NVIDIA Archive

To get rid of cmake error issue: .. Could NOT find CUDNN (missing: CUDNN_LIBRARY_PATH CUDNN_INCLUDE_PATH) ..

https://developer.nvidia.com/rdp/cudnn-archive Make an account and download

I was select from

Download cuDNN v8.0.4 (September 28th, 2020), for CUDA 10.1

cuDNN Runtime Library for Ubuntu18.04 (Deb)
cuDNN Developer Library for Ubuntu18.04 (Deb)
cuDNN Code Samples and User Guide for Ubuntu18.04 (Deb)

Then Install the runtime library, for example:

~/Downloads$ sudo dpkg -i libcudnn8_8.0.4.30-1+cuda10.1_amd64.deb
~/Downloads$ sudo dpkg -i libcudnn8-dev_8.0.4.30-1+cuda10.1_amd64.deb
~/Downloads$ sudo dpkg -i libcudnn8-samples_8.0.4.30-1+cuda10.1_amd64.deb

Or last command testing 2021-10-19, versions CUDA 10.2 and cuDNN 8

Download cuDNN v8.2.4 , for CUDA 10.2

$ sudo dpkg -i libcudnn8_8.2.4.15-1+cuda10.2_amd64.deb
$ sudo dpkg -i libcudnn8-dev_8.2.4.15-1+cuda10.2_amd64.deb
$ sudo dpkg -i libcudnn8-samples_8.2.4.15-1+cuda10.2_amd64.deb

Check cuDNN

$ /sbin/ldconfig -N -v $(sed ‘s/:/ /’ <<< $LD_LIBRARY_PATH) 2>/dev/null | grep libcudnn

Example answer:

sed: -e expression #1, char 1: unknown command: `�'
libcudnn_adv_train.so.8 -> libcudnn_adv_train.so.8.0.4
libcudnn_ops_train.so.8 -> libcudnn_ops_train.so.8.0.4
libcudnn_cnn_train.so.8 -> libcudnn_cnn_train.so.8.0.4
libcudnn_ops_infer.so.8 -> libcudnn_ops_infer.so.8.0.4
libcudnn_adv_infer.so.8 -> libcudnn_adv_infer.so.8.0.4
libcudnn_cnn_infer.so.8 -> libcudnn_cnn_infer.so.8.0.4
libcudnn.so.7 -> libcudnn.so.7.6.5
libcudnn.so.8 -> libcudnn.so.8.0.4

Or

sed: -e expression #1, char 1: unknown command: `�'
libcudnn_ops_train.so.8 -> libcudnn_ops_train.so.8.2.4
libcudnn_cnn_infer.so.8 -> libcudnn_cnn_infer.so.8.2.4
libcudnn.so.7 -> libcudnn.so.7.6.5
libcudnn_ops_infer.so.8 -> libcudnn_ops_infer.so.8.2.4
libcudnn_adv_train.so.8 -> libcudnn_adv_train.so.8.2.4
libcudnn_cnn_train.so.8 -> libcudnn_cnn_train.so.8.2.4
libcudnn.so.8 -> libcudnn.so.8.2.4
libcudnn_adv_infer.so.8 -> libcudnn_adv_infer.so.8.2.4

Download libtorch

https://pytorch.org/

PyTorch Build: Stable (1.7.1)
Your OS: Linux
Package: libtorch
CUDA: 10.1

Download here (cxx11 ABI):
https://download.pytorch.org/libtorch/cu101/libtorch-cxx11-abi-shared-with-deps-1.7.1%2Bcu101.zip

Make a test directory hello1

$ mkdir hello1
$ cd hello1
/hello1$ wget https://download.pytorch.org/libtorch/cu101/libtorch-cxx11-abi-shared-with-deps-1.7.1%2Bcu101.zip

Unzip libtorch zipfile in hello1 directory

/hello1$ unzip libtorch-cxx11-abi-shared-with-deps-1.7.1+cu101.zip

Install cmake

$ sudo apt-get update
$ sudo apt-get install cmake

Install git

$ sudo apt-get update
$ sudo apt-get install git

Install OpenCV

$ git clone https://github.com/opencv/opencv
$ cd opencv

Install libgtk2.0-dev and pkg-config if issues with libgtk2.0-dev and pkg-config

$ sudo apt-get install libgtk2.0-dev
$ sudo apt-get install pkg-config

Make a build directory

/opencv$ mkdir build
/opencv$ cd build

Do cmake with OPENCV_GENERATE_PKGCONFIG=ON and with WITH_GTK=ON

Both OPENCV_GENERATE_PKGCONFIG=ON and WITH_GTK=ON need to be turned ON to not get error later.

/opencv/build$ sudo cmake -D OPENCV_GENERATE_PKGCONFIG=ON WITH_GTK=ON ..
/opencv/build$ sudo make

Time... for coffe :)

Put files into the system folder with this command:

/opencv/build$ sudo make install

Use Visual Studio Code IDE editor.

Install Visual Studio Code

https://code.visualstudio.com/docs/setup/linux

$ sudo snap install --classic code

Download test code, C++ main.cpp and CMakeFiles.txt (this repository).

$ cd hello1
/hello1$ git clone https://github.com/ollewelin/torchlib-opencv-gpu
/hello1$ cd torchlib-opencv-gpu	
/hello1/torchlib-opencv-gpu$ mv *.* ../
/hello1/torchlib-opencv-gpu$ cd ..
/hello1$ sudo rm -r torchlib-opencv-gpu

Start Visual Studio Code IDE with test files.

/hello1$ code .

Include OpenCV path to VS code

In VS code IDE:
Wiev -> Command pallete.. -> C++: Edit Configurations (UI)
add to Include path

/usr/local/include/opencv4
Save settings
CTRL-S

Important change CMakeLists.txt path with your working directory path

/hello1$ cd ..
/$ pwd

reply example

/home/tiny/olle1

Edit your path into CMakeLists.txt file Example:

...
set(OpenCV_DIR /home/tiny/olle1/OpenCV/opencv-master/build)
...
list(APPEND CMAKE_PREFIX_PATH "/home/tiny/olle1/hello1/libtorch")
...

Use cmake debug option

/hello1$ cmake -DCMAKE_BUILD_TYPE=Debug .

Use cmake without debug option

/hello1$ cmake CMakeLists.txt

Example how it looks on my other partition

tiny@tiny-TUF-Gaming-FX505DT-FX505DT:~/olle1/hello5$ cmake CMakeLists.txt
-- The C compiler identification is GNU 7.5.0
-- The CXX compiler identification is GNU 7.5.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE  
-- Found CUDA: /usr/local/cuda-10.1 (found version "10.1") 
-- Caffe2: CUDA detected: 10.1
-- Caffe2: CUDA nvcc is: /usr/local/cuda-10.1/bin/nvcc
-- Caffe2: CUDA toolkit directory: /usr/local/cuda-10.1
-- Caffe2: Header version is: 10.1
-- Found CUDNN: /usr/lib/x86_64-linux-gnu/libcudnn.so  
-- Found cuDNN: v8.0.4  (include: /usr/include, library: /usr/lib/x86_64-linux-gnu/libcudnn.so)
-- Autodetected CUDA architecture(s):  7.5
-- Added CUDA NVCC flags for: -gencode;arch=compute_75,code=sm_75
-- Found Torch: /home/tiny/olle1/hello5/libtorch-cxx11-abi-shared-with-deps-1.7.1+cu101/libtorch/lib/libtorch.so  
-- Found OpenCV: /home/tiny/olle1/OpenCV/opencv-master/build (found version "4.5.1") 
-- Configuring done
-- Generating done
-- Build files have been written to: /home/tiny/olle1/hello5
tiny@tiny-TUF-Gaming-FX505DT-FX505DT:~/olle1/hello5$ 

Compile and run test program

/hello1$ make
/hello1$ ./main

Run debug inside VS code

Mark main.cpp in file explorer explorer -> main.cpp

Run -> Start Debugging or F5

Select C++(GDB/LLDB)

Edit launch.json file and change

..
"program": "enter program name, for example ${workspaceFolder}/a.out",
..

to

..
"program": "main",
..

save Ctrl-S

Run -> Start debugging 
of
F5

If the launch.json only contain this:

{
    // Use IntelliSense to learn about possible attributes.
    // Hover to view descriptions of existing attributes.
    // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
    "version": "0.2.0",
    "configurations": [
        
    ]
}

Then click Add configuration

{
    // Use IntelliSense to learn about possible attributes.
    // Hover to view descriptions of existing attributes.
    // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
    "version": "0.2.0",
    "configurations": [
        {
            "name": "(gdb) Launch",
            "type": "cppdbg",
            "request": "launch",
            "program": "enter program name, for example ${workspaceFolder}/a.out",
            "args": [],
            "stopAtEntry": false,
            "cwd": "${fileDirname}",
            "environment": [],
            "externalConsole": false,
            "MIMode": "gdb",
            "setupCommands": [
                {
                    "description": "Enable pretty-printing for gdb",
                    "text": "-enable-pretty-printing",
                    "ignoreFailures": true
                },
                {
                    "description":  "Set Disassembly Flavor to Intel",
                    "text": "-gdb-set disassembly-flavor intel",
                    "ignoreFailures": true
                }
            ]
        }
    ]
}

Change launch.json file "program"

....
            "program": "main",
....

Then debug view look like this:

CUDA 10.2 cmake and make with main.cpp from GPU_gradient_test 2021-10-27

olle@olle-TUF-Gaming-FX505DT-FX505DT:~/pytorch_cpp$ cmake CMakeLists.txt
-- The C compiler identification is GNU 7.5.0
-- The CXX compiler identification is GNU 7.5.0
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: /usr/bin/cc - skipped
-- Detecting C compile features
-- Detecting C compile features - done
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++ - skipped
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Performing Test CMAKE_HAVE_LIBC_PTHREAD
-- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Failed
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE  
-- Found CUDA: /usr/local/cuda-10.2 (found version "10.2") 
-- Caffe2: CUDA detected: 10.2
-- Caffe2: CUDA nvcc is: /usr/local/cuda-10.2/bin/nvcc
-- Caffe2: CUDA toolkit directory: /usr/local/cuda-10.2
-- Caffe2: Header version is: 10.2
-- Found CUDNN: /usr/lib/x86_64-linux-gnu/libcudnn.so  
-- Found cuDNN: v8.2.4  (include: /usr/include, library: /usr/lib/x86_64-linux-gnu/libcudnn.so)
-- /usr/local/cuda-10.2/lib64/libnvrtc.so shorthash is 08c4863f
-- Autodetected CUDA architecture(s):  7.5
-- Added CUDA NVCC flags for: -gencode;arch=compute_75,code=sm_75
-- Found Torch: /home/olle/pytorch_cpp/libtorch/lib/libtorch.so  
-- Found OpenCV: /usr/local (found version "4.5.2") 
-- Configuring done
-- Generating done
-- Build files have been written to: /home/olle/pytorch_cpp
olle@olle-TUF-Gaming-FX505DT-FX505DT:~/pytorch_cpp$ 


olle@olle-TUF-Gaming-FX505DT-FX505DT:~/pytorch_cpp$ make
[ 50%] Building CXX object CMakeFiles/main.dir/main.cpp.o
[100%] Linking CXX executable main
[100%] Built target main
olle@olle-TUF-Gaming-FX505DT-FX505DT:~/pytorch_cpp$ ./main
 0  0  0  0  0
 0  0  0  0  0
[ CPUFloatType{2,5} ]
 0
 0
 0
 0
 0
[ CPUFloatType{5} ]
  0  16   0   0   0
  0   0   0   0   0
[ CPUFloatType{2,5} ]
CUDA is available! 
 0.8615  0.8352  0.5833
 0.9185  0.5853  0.7216
 0.8694  0.3485  0.6050
 0.9271  0.6108  0.3470
 0.0329  0.1904  0.3169
[ CUDAFloatType{5,3} ]
 0.8615  0.8352  0.5833  0.9185  0.5853
 0.7216  0.8694  0.3485  0.6050  0.9271
 0.6108  0.3470  0.0329  0.1904  0.3169
[ CUDAFloatType{3,5} ]
 17.3000   0.8352   0.5833   0.9185   0.5853
  0.7216   0.8694   0.3485   0.6050   0.9271
  0.6108   0.3470   0.0329   0.1904   0.3169
[ CUDAFloatType{3,5} ]
 0  0  0
 0  0  0
[ CPUFloatType{2,3} ]
  0  16   0   0   0
  0   0   0   0   0
[ CUDAFloatType{2,5} ]
More basic tests
 3
 2
[ CUDALongType{2} ]
************* GPU t5 tensor **************
 11  12  13
 14  15  16
[ CUDAFloatType{2,3} ]
************* Reshape t5 tensor code  t5.reshape({3,2}) no change **************
 11  12  13
 14  15  16
[ CUDAFloatType{2,3} ]
************* Reshape t5 = t5.reshape({3,2})  t5 tensor **************
 11  12
 13  14
 15  16
[ CUDAFloatType{3,2} ]

Make CPU tensor forward calculation 
c1_cpu = a1_cpu * b1_cpu = 15.9779
[ CPUFloatType{} ]
Make CPU tensor gradient calculation 
a1_cpu gradient = 2.8532
[ CPUFloatType{} ]
NOTE! b1_cpu gradient is disabled 
b1_cpu gradient = [ Tensor (undefined) ]
PyTorch Basics

Make GPU tensor forward calculation 
c1_gpu = a1_gpu * b1_gpu = 15.98
[ CUDAFloatType{} ]
Make GPU tensor gradient calculation 
a1_gpu gradient = 2.853
[ CUDAFloatType{} ]
b1_gpu gradient = 5.6
[ CUDAFloatType{} ]
olle@olle-TUF-Gaming-FX505DT-FX505DT:~/pytorch_cpp$ 

About

Installing CUDA toolkit, cuDNN, Torchlib C++, cmake, VS code and OpenCV for machine learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published