Skip to content
This repository has been archived by the owner on Sep 18, 2023. It is now read-only.

[NSE-926] Support a UDF: URLDecoder #925

Merged
merged 9 commits into from
May 24, 2022
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -399,6 +399,29 @@ object ColumnarExpressionConverter extends Logging {
attributeSeq,
convertBoundRefToAttrRef = convertBoundRefToAttrRef),
expr)
// Scala UDF.
case expr: ScalaUDF if (expr.udfName match {
case Some(name) =>
ColumnarUDF.isSupportedUDF(name)
case None =>
false
}) =>
val children = expr.children.map { expr =>
replaceWithColumnarExpression(
expr,
attributeSeq,
convertBoundRefToAttrRef = convertBoundRefToAttrRef)
}
ColumnarUDF.create(children, expr)
// Hive UDF.
case expr if (ColumnarUDF.isSupportedUDF(expr.prettyName)) =>
val children = expr.children.map { expr =>
replaceWithColumnarExpression(
expr,
attributeSeq,
convertBoundRefToAttrRef = convertBoundRefToAttrRef)
}
ColumnarUDF.create(children, expr)
case expr =>
throw new UnsupportedOperationException(
s" --> ${expr.getClass} | ${expr} is not currently supported.")
Expand Down Expand Up @@ -460,6 +483,15 @@ object ColumnarExpressionConverter extends Logging {
containsSubquery(sr.srcExpr) ||
containsSubquery(sr.searchExpr) ||
containsSubquery(sr.replaceExpr)
case expr: ScalaUDF if (expr.udfName match {
case Some(name) =>
ColumnarUDF.isSupportedUDF(name)
case None =>
false
}) =>
expr.children.map(containsSubquery).exists(_ == true)
case expr if (ColumnarUDF.isSupportedUDF(expr.prettyName)) =>
expr.children.map(containsSubquery).exists(_ == true)
case expr =>
throw new UnsupportedOperationException(
s" --> ${expr.getClass} | ${expr} is not currently supported.")
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package com.intel.oap.expression

import com.google.common.collect.Lists
import org.apache.arrow.gandiva.expression.{TreeBuilder, TreeNode}
import org.apache.arrow.vector.types.pojo.ArrowType

import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.codegen.{CodegenContext, ExprCode}
import org.apache.spark.sql.types.DataType
import org.apache.spark.sql.types.StringType


case class ColumnarURLDecoder(input: Expression) extends Expression with ColumnarExpression {
def nullable: Boolean = {
true
}

def children: Seq[Expression] = {
Seq(input)
}

def dataType: DataType = {
StringType
}

def eval(input: InternalRow): Any = {
throw new UnsupportedOperationException("Should not trigger eval!")
}

def child: Expression = {
input
}

override def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = {
throw new UnsupportedOperationException("Should not trigger code gen!")
}

protected def withNewChildrenInternal(newChildren: IndexedSeq[Expression]): ColumnarURLDecoder = {
copy(input = newChildren.head)
}

buildCheck

def buildCheck: Unit = {
val supportedTypes = List(StringType)
if (!supportedTypes.contains(input.dataType)) {
throw new UnsupportedOperationException("Only StringType input is supported!")
}
}

override def supportColumnarCodegen(args: java.lang.Object): Boolean = {
false
}

override def doColumnarCodeGen(args: Object): (TreeNode, ArrowType) = {
val (inputNode, _): (TreeNode, ArrowType) =
input.asInstanceOf[ColumnarExpression].doColumnarCodeGen(args)
val resultType = new ArrowType.Utf8()
val funcNode =
TreeBuilder.makeFunction(
"url_decoder",
Lists.newArrayList(inputNode),
resultType)
(funcNode, resultType)
}
}

object ColumnarUDF {
// Keep the supported UDF name. The name is specified in registering the
// row based function in spark, e.g.,
// CREATE TEMPORARY FUNCTION UrlDecoder AS 'com.intel.test.URLDecoderNew';
val supportList = {"UrlDecoder"}

def isSupportedUDF(name: String): Boolean = {
if (name == null) {
return false;
}
return supportList.contains(name)
}

def create(children: Seq[Expression], original: Expression): Expression = {
original.prettyName match {
// Hive UDF.
case "UrlDecoder" =>
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

does this mean the UDF name is case sensitive? e.g., urlDecoder and UrlDecoder are different UDF

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just ignore case in the latest commit which has been validated by some simple tests.

ColumnarURLDecoder(children.head)
// Scala UDF.
case "scalaudf" =>
original.asInstanceOf[ScalaUDF].udfName.get match {
case "UrlDecoder" =>
ColumnarURLDecoder(children.head)
case other =>
throw new UnsupportedOperationException(s"not currently supported: $other.")
}
case other =>
throw new UnsupportedOperationException(s"not currently supported: $other.")
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -603,6 +603,16 @@ class DataFrameSuite extends QueryTest
)
}

test("Columnar UDF") {
// Register a scala UDF. The scala UDF code will not be acutally used. It
// will be replaced by columnar UDF at runtime.
spark.udf.register("UrlDecoder", (s : String) => s)
checkAnswer(
sql("select UrlDecoder('AaBb%23'), UrlDecoder(null)"),
Seq(Row("AaBb#", null))
)
}

test("callUDF without Hive Support") {
val df = Seq(("id1", 1), ("id2", 4), ("id3", 5)).toDF("id", "value")
df.sparkSession.udf.register("simpleUDF", (v: Int) => v * v)
Expand Down