This repository has been archived by the owner on Sep 18, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 75
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[NSE-245]Adding columnar RDD cache support (#246)
* Adding columnar RDD cache support Signed-off-by: Chendi Xue <[email protected]> * Directly save reference, only convert to Array[Byte] when calling by BlockManager Signed-off-by: Chendi Xue <[email protected]> * Add DeAllocator to construction to make sure this instance will be released once it be deleted by JVM Signed-off-by: Chendi Xue <[email protected]> * Delete cache by adding a release in InMemoryRelation Since unpersist only delete RDD object, seems our deAllocator wasn't being called along Now we added a release function in InMemoryRelation clearCache() func, may need to think a new way for 3.1.0 Signed-off-by: Chendi Xue <[email protected]>
- Loading branch information
Showing
8 changed files
with
1,114 additions
and
66 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
242 changes: 242 additions & 0 deletions
242
native-sql-engine/core/src/main/scala/com/intel/oap/execution/ColumnarInMemoryRelation.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,242 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package com.intel.oap.execution | ||
|
||
import java.io._ | ||
import org.apache.commons.lang3.StringUtils | ||
|
||
import com.intel.oap.expression._ | ||
import com.intel.oap.vectorized.ArrowWritableColumnVector | ||
import com.intel.oap.vectorized.CloseableColumnBatchIterator | ||
import org.apache.arrow.memory.ArrowBuf | ||
import org.apache.spark.TaskContext | ||
import org.apache.spark.network.util.JavaUtils | ||
import org.apache.spark.rdd.RDD | ||
import org.apache.spark.sql.catalyst.InternalRow | ||
import org.apache.spark.sql.catalyst.analysis.MultiInstanceRelation | ||
import org.apache.spark.sql.catalyst.expressions._ | ||
import org.apache.spark.sql.catalyst.plans.{logical, QueryPlan} | ||
import org.apache.spark.sql.catalyst.plans.logical.{ColumnStat, LogicalPlan, Statistics} | ||
import org.apache.spark.sql.catalyst.util.truncatedString | ||
import org.apache.spark.sql.columnar.{ | ||
CachedBatch, | ||
CachedBatchSerializer, | ||
SimpleMetricsCachedBatch, | ||
SimpleMetricsCachedBatchSerializer | ||
} | ||
import org.apache.spark.sql.execution.SparkPlan | ||
import org.apache.spark.sql.execution.vectorized.{WritableColumnVector} | ||
import org.apache.spark.sql.internal.{SQLConf, StaticSQLConf} | ||
import org.apache.spark.sql.types._ | ||
import org.apache.spark.sql.vectorized.{ColumnarBatch, ColumnVector} | ||
import org.apache.spark.storage.StorageLevel | ||
import org.apache.spark.util.{LongAccumulator, Utils} | ||
import scala.collection.JavaConverters._ | ||
import scala.collection.mutable.ArrayBuffer | ||
import sun.misc.Cleaner | ||
|
||
private class Deallocator(var arrowColumnarBatch: Array[ColumnarBatch]) extends Runnable { | ||
|
||
override def run(): Unit = { | ||
try { | ||
Option(arrowColumnarBatch) match { | ||
case Some(buffer) => | ||
//System.out.println(s"ArrowCachedBatch released in DeAllocator, First buffer name is ${buffer(0)}") | ||
buffer.foreach(_.close) | ||
case other => | ||
} | ||
} catch { | ||
case e: Exception => | ||
// We should suppress all possible errors in Cleaner to prevent JVM from being shut down | ||
//System.err.println("ArrowCachedBatch-Deallocator: Error running deallocator") | ||
e.printStackTrace() | ||
} | ||
} | ||
} | ||
|
||
/** | ||
* The default implementation of CachedBatch. | ||
* | ||
* @param numRows The total number of rows in this batch | ||
* @param buffers The buffers for serialized columns | ||
* @param stats The stat of columns | ||
*/ | ||
case class ArrowCachedBatch( | ||
var numRows: Int, | ||
var buffer: Array[ColumnarBatch], | ||
stats: InternalRow) | ||
extends SimpleMetricsCachedBatch | ||
with Externalizable { | ||
if (buffer != null) { | ||
//System.out.println(s"ArrowCachedBatch constructed First buffer name is ${buffer(0)}") | ||
Cleaner.create(this, new Deallocator(buffer)) | ||
} | ||
def this() = { | ||
this(0, null, null) | ||
} | ||
def release() = { | ||
//System.out.println(s"ArrowCachedBatch released by clear cache, First buffer name is ${buffer(0)}") | ||
buffer.foreach(_.close) | ||
} | ||
lazy val estimatedSize: Long = { | ||
var size: Long = 0 | ||
buffer.foreach(batch => { | ||
size += ConverterUtils.calcuateEstimatedSize(batch) | ||
}) | ||
//System.out.println(s"ArrowCachedBatch${buffer(0)} estimated size is ${size}") | ||
size | ||
} | ||
override def sizeInBytes: Long = estimatedSize | ||
override def writeExternal(out: ObjectOutput): Unit = { | ||
// System.out.println(s"writeExternal for $this") | ||
val rawArrowData = ConverterUtils.convertToNetty(buffer) | ||
out.writeObject(rawArrowData) | ||
buffer.foreach(_.close) | ||
} | ||
|
||
override def readExternal(in: ObjectInput): Unit = { | ||
numRows = 0 | ||
val rawArrowData = in.readObject().asInstanceOf[Array[Byte]] | ||
buffer = ConverterUtils.convertFromNetty(null, new ByteArrayInputStream(rawArrowData)).toArray | ||
//System.out.println(s"ArrowCachedBatch constructed by deserilizer, First buffer name is ${buffer(0)}") | ||
Cleaner.create(this, new Deallocator(buffer)) | ||
} | ||
} | ||
|
||
/** | ||
* The default implementation of CachedBatchSerializer. | ||
*/ | ||
class ArrowColumnarCachedBatchSerializer extends SimpleMetricsCachedBatchSerializer { | ||
override def supportsColumnarInput(schema: Seq[Attribute]): Boolean = true | ||
|
||
override def convertColumnarBatchToCachedBatch( | ||
input: RDD[ColumnarBatch], | ||
schema: Seq[Attribute], | ||
storageLevel: StorageLevel, | ||
conf: SQLConf): RDD[CachedBatch] = { | ||
val batchSize = conf.columnBatchSize | ||
val useCompression = conf.useCompression | ||
convertForCacheInternal(input, schema, batchSize, useCompression) | ||
} | ||
|
||
override def convertInternalRowToCachedBatch( | ||
input: RDD[InternalRow], | ||
schema: Seq[Attribute], | ||
storageLevel: StorageLevel, | ||
conf: SQLConf): RDD[CachedBatch] = | ||
throw new IllegalStateException("InternalRow input is not supported") | ||
|
||
def convertForCacheInternal( | ||
input: RDD[ColumnarBatch], | ||
output: Seq[Attribute], | ||
batchSize: Int, | ||
useCompression: Boolean): RDD[CachedBatch] = { | ||
input.mapPartitions { iter => | ||
var processed = false | ||
new Iterator[ArrowCachedBatch] { | ||
def next(): ArrowCachedBatch = { | ||
processed = true | ||
var _numRows: Int = 0 | ||
val _input = new ArrayBuffer[ColumnarBatch]() | ||
while (iter.hasNext) { | ||
val batch = iter.next | ||
if (batch.numRows > 0) { | ||
(0 until batch.numCols).foreach(i => | ||
batch.column(i).asInstanceOf[ArrowWritableColumnVector].retain()) | ||
_numRows += batch.numRows | ||
_input += batch | ||
} | ||
} | ||
// To avoid mem copy, we only save columnVector reference here | ||
val res = ArrowCachedBatch(_numRows, _input.toArray, null) | ||
// System.out.println(s"convertForCacheInternal cachedBatch is ${res}") | ||
res | ||
} | ||
|
||
def hasNext: Boolean = !processed | ||
} | ||
} | ||
} | ||
|
||
override def convertCachedBatchToColumnarBatch( | ||
input: RDD[CachedBatch], | ||
cacheAttributes: Seq[Attribute], | ||
selectedAttributes: Seq[Attribute], | ||
conf: SQLConf): RDD[ColumnarBatch] = { | ||
val columnIndices = | ||
selectedAttributes.map(a => cacheAttributes.map(o => o.exprId).indexOf(a.exprId)).toArray | ||
def createAndDecompressColumn(cachedIter: Iterator[CachedBatch]): Iterator[ColumnarBatch] = { | ||
val res = new Iterator[ColumnarBatch] { | ||
var iter: Iterator[ColumnarBatch] = null | ||
if (cachedIter.hasNext) { | ||
val cachedColumnarBatch: ArrowCachedBatch = | ||
cachedIter.next.asInstanceOf[ArrowCachedBatch] | ||
// System.out.println( | ||
// s"convertCachedBatchToColumnarBatch cachedBatch is ${cachedColumnarBatch}") | ||
val rawData = cachedColumnarBatch.buffer | ||
|
||
iter = new Iterator[ColumnarBatch] { | ||
val numBatches = rawData.size | ||
var batchIdx = 0 | ||
override def hasNext: Boolean = batchIdx < numBatches | ||
override def next(): ColumnarBatch = { | ||
val vectors = columnIndices.map(i => rawData(batchIdx).column(i)) | ||
vectors.foreach(v => v.asInstanceOf[ArrowWritableColumnVector].retain()) | ||
val numRows = rawData(batchIdx).numRows | ||
batchIdx += 1 | ||
new ColumnarBatch(vectors, numRows) | ||
} | ||
} | ||
} | ||
def next(): ColumnarBatch = | ||
if (iter != null) { | ||
iter.next | ||
} else { | ||
val resultStructType = StructType(selectedAttributes.map(a => | ||
StructField(a.name, a.dataType, a.nullable, a.metadata))) | ||
val resultColumnVectors = | ||
ArrowWritableColumnVector.allocateColumns(0, resultStructType).toArray | ||
new ColumnarBatch(resultColumnVectors.map(_.asInstanceOf[ColumnVector]), 0) | ||
} | ||
def hasNext: Boolean = iter.hasNext | ||
} | ||
new CloseableColumnBatchIterator(res) | ||
} | ||
input.mapPartitions(createAndDecompressColumn) | ||
} | ||
|
||
override def convertCachedBatchToInternalRow( | ||
input: RDD[CachedBatch], | ||
cacheAttributes: Seq[Attribute], | ||
selectedAttributes: Seq[Attribute], | ||
conf: SQLConf): RDD[InternalRow] = { | ||
// Find the ordinals and data types of the requested columns. | ||
val columnarBatchRdd = | ||
convertCachedBatchToColumnarBatch(input, cacheAttributes, selectedAttributes, conf) | ||
columnarBatchRdd.mapPartitions { batches => | ||
val toUnsafe = UnsafeProjection.create(selectedAttributes, selectedAttributes) | ||
batches.flatMap { batch => batch.rowIterator().asScala.map(toUnsafe) } | ||
} | ||
} | ||
|
||
override def supportsColumnarOutput(schema: StructType): Boolean = true | ||
|
||
override def vectorTypes(attributes: Seq[Attribute], conf: SQLConf): Option[Seq[String]] = | ||
Option(Seq.fill(attributes.length)(classOf[ArrowWritableColumnVector].getName)) | ||
|
||
} |
Oops, something went wrong.