This repo is the PyTorch codes for "Downscaling Earth System Models with Deep Learning"
Geospatial Guided Attention Module
Localization Guided Augmentation Moduleusage: main_srresnet.py [-h] [--channels CHANNELS] [--batchSize BATCHSIZE]
[--nEpochs NEPOCHS] [--lr LR] [--step STEP] [--cuda]
[--start-epoch START_EPOCH] [--gpus GPUS] [--position]
[--cutblur] [--saliency] [--piece PIECE] [--second]
[--first] [--r_factor R_FACTOR]
[--pos_rfactor POS_RFACTOR] [--pooling POOLING]
config
-h, --help show this help message and exit
--channels CHANNELS channels to be used
--batchSize BATCHSIZE
training batch size
--nEpochs NEPOCHS number of epochs to train for
--lr LR Learning Rate. Default=1e-4
--step STEP Sets the learning rate to the initial LR decayed by
momentum every n epochs
--cuda Use cuda?
--start-epoch START_EPOCH
Manual epoch number
--threads THREADS Number of threads for data loader to use
--pretrained PRETRAINED
path to pretrained model (default: none)
--gpus GPUS gpu ids
--position Enable position encoding
--cutblur Enable cutblur
--saliency Enable saliency detection
--piece PIECE pieces
--second Apply augmentation on second channel only
--first Apply augmentation on first channel only
--r_factor R_FACTOR R_FACTOR hyperparameter
--pos_rfactor POS_RFACTOR
POS_RFACTOR hyperparameter
--pooling POOLING mean or max
usage: evaluation.py [-h] [--channel CHANNEL] [--name NAME]
[--checkpoint CHECKPOINT]
optional arguments:
-h, --help show this help message and exit
--channel CHANNEL number of channels to be used
--name NAME name of the files
--checkpoint CHECKPOINT
name of the checkpoint dir
usage: compare.py [-h] [--name NAME] [--filter_season FILTER_SEASON]
[--data DATA]
optional arguments:
-h, --help show this help message and exit
--name NAME name of the predicted file (.npy)
--filter_season FILTER_SEASON
--data DATA Dataset
We provide the data for our experiment. You can download the data using following link
Currently, we support the output for our model.
Dataset | Output |
---|---|
2x | Download |
4x | Download |
8x | Download |
@inproceedings{park2022downscaling,
title={Downscaling Earth System Models with Deep Learning},
author={Park, Sungwon and Singh, Karandeep and Nellikkattil, Arjun and Zeller, Elke and Mai, Tung Duong and Cha, Meeyoung},
booktitle={Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
pages={3733--3742},
year={2022}
}