Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: implement Eq trait on curve points #3944

Merged
merged 8 commits into from
Jan 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 15 additions & 10 deletions noir_stdlib/src/ec/montcurve.nr
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@ mod affine {
use crate::ec::safe_inverse;
use crate::ec::sqrt;
use crate::ec::ZETA;
use crate::cmp::Eq;

// Curve specification
struct Curve { // Montgomery Curve configuration (ky^2 = x^3 + j*x^2 + x)
j: Field,
Expand All @@ -32,11 +34,6 @@ mod affine {
Self {x, y, infty: false}
}

// Check for equality
fn eq(self, p: Self) -> bool {
(self.infty & p.infty) | (!self.infty & !p.infty & (self.x == p.x) & (self.y == p.y))
}

// Check if zero
pub fn is_zero(self) -> bool {
self.infty
Expand Down Expand Up @@ -76,6 +73,12 @@ mod affine {
}
}

impl Eq for Point {
fn eq(self, p: Self) -> bool {
(self.infty & p.infty) | (!self.infty & !p.infty & (self.x == p.x) & (self.y == p.y))
}
}

impl Curve {
// Curve constructor
pub fn new(j: Field, k: Field, gen: Point) -> Self {
Expand Down Expand Up @@ -219,6 +222,7 @@ mod curvegroup {
use crate::ec::swcurve::curvegroup::Point as SWPoint;
use crate::ec::tecurve::curvegroup::Curve as TECurve;
use crate::ec::tecurve::curvegroup::Point as TEPoint;
use crate::cmp::Eq;

struct Curve { // Montgomery Curve configuration (ky^2 z = x*(x^2 + j*x*z + z*z))
j: Field,
Expand All @@ -239,11 +243,6 @@ mod curvegroup {
Self {x, y, z}
}

// Check for equality
fn eq(self, p: Self) -> bool {
(self.z == p.z) | (((self.x * self.z) == (p.x * p.z)) & ((self.y * self.z) == (p.y * p.z)))
}

// Check if zero
pub fn is_zero(self) -> bool {
self.z == 0
Expand Down Expand Up @@ -277,6 +276,12 @@ mod curvegroup {
}
}

impl Eq for Point {
fn eq(self, p: Self) -> bool {
(self.z == p.z) | (((self.x * self.z) == (p.x * p.z)) & ((self.y * self.z) == (p.y * p.z)))
}
}

impl Curve {
// Curve constructor
pub fn new(j: Field, k: Field, gen: Point) -> Self {
Expand Down
40 changes: 23 additions & 17 deletions noir_stdlib/src/ec/swcurve.nr
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@ mod affine {
use crate::ec::safe_inverse;
use crate::ec::is_square;
use crate::ec::sqrt;
use crate::cmp::Eq;

// Curve specification
struct Curve { // Short Weierstraß curve
// Coefficients in defining equation y^2 = x^3 + ax + b
Expand All @@ -28,15 +30,6 @@ mod affine {
Self {x, y, infty: false}
}

// Check for equality
fn eq(self, p: Point) -> bool {
let Self {x: x1, y: y1, infty: inf1} = self;
let Self {x: x2, y: y2, infty: inf2} = p;

(inf1 & inf2)
| (!inf1 & !inf2 & (x1 == x2) & (y1 == y2))
}

// Check if zero
pub fn is_zero(self) -> bool {
self.eq(Point::zero())
Expand Down Expand Up @@ -65,6 +58,16 @@ mod affine {
}
}

impl Eq for Point {
fn eq(self, p: Self) -> bool {
let Self {x: x1, y: y1, infty: inf1} = self;
let Self {x: x2, y: y2, infty: inf2} = p;

(inf1 & inf2)
| (!inf1 & !inf2 & (x1 == x2) & (y1 == y2))
}
}

impl Curve {
// Curve constructor
pub fn new(a: Field, b: Field, gen: Point) -> Curve {
Expand Down Expand Up @@ -182,6 +185,8 @@ mod curvegroup {
// Points are represented by three-dimensional Jacobian coordinates.
// See <https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates> for details.
use crate::ec::swcurve::affine;
use crate::cmp::Eq;

// Curve specification
struct Curve { // Short Weierstraß curve
// Coefficients in defining equation y^2 = x^3 + axz^4 + bz^6
Expand All @@ -203,14 +208,6 @@ mod curvegroup {
Self {x, y, z}
}

// Check for equality
fn eq(self, p: Point) -> bool {
let Self {x: x1, y: y1, z: z1} = self;
let Self {x: x2, y: y2, z: z2} = p;

((z1 == 0) & (z2 == 0)) | ((z1 != 0) & (z2 != 0) & (x1*z2*z2 == x2*z1*z1) & (y1*z2*z2*z2 == y2*z1*z1*z1))
}

// Check if zero
pub fn is_zero(self) -> bool {
self.eq(Point::zero())
Expand Down Expand Up @@ -240,6 +237,15 @@ mod curvegroup {
}
}

impl Eq for Point {
fn eq(self, p: Self) -> bool {
let Self {x: x1, y: y1, z: z1} = self;
let Self {x: x2, y: y2, z: z2} = p;

((z1 == 0) & (z2 == 0)) | ((z1 != 0) & (z2 != 0) & (x1*z2*z2 == x2*z1*z1) & (y1*z2*z2*z2 == y2*z1*z1*z1))
}
}

impl Curve {
// Curve constructor
pub fn new(a: Field, b: Field, gen: Point) -> Curve {
Expand Down
38 changes: 22 additions & 16 deletions noir_stdlib/src/ec/tecurve.nr
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@ mod affine {
use crate::ec::montcurve::affine::Point as MPoint;
use crate::ec::swcurve::affine::Curve as SWCurve;
use crate::ec::swcurve::affine::Point as SWPoint;
use crate::cmp::Eq;

// Curve specification
struct Curve { // Twisted Edwards curve
// Coefficients in defining equation ax^2 + y^2 = 1 + dx^2y^2
Expand All @@ -29,14 +31,6 @@ mod affine {
Self { x, y }
}

// Check for equality
fn eq(self, p: Point) -> bool {
let Self {x: x1, y: y1} = self;
let Self {x: x2, y: y2} = p;

(x1 == x2) & (y1 == y2)
}

// Check if zero
pub fn is_zero(self) -> bool {
self.eq(Point::zero())
Expand Down Expand Up @@ -74,6 +68,15 @@ mod affine {
}
}

impl Eq for Point {
fn eq(self, p: Self) -> bool {
let Self {x: x1, y: y1} = self;
let Self {x: x2, y: y2} = p;

(x1 == x2) & (y1 == y2)
}
}

impl Curve {
// Curve constructor
pub fn new(a: Field, d: Field, gen: Point) -> Curve {
Expand Down Expand Up @@ -198,6 +201,8 @@ mod curvegroup {
use crate::ec::montcurve::curvegroup::Point as MPoint;
use crate::ec::swcurve::curvegroup::Curve as SWCurve;
use crate::ec::swcurve::curvegroup::Point as SWPoint;
use crate::cmp::Eq;

// Curve specification
struct Curve { // Twisted Edwards curve
// Coefficients in defining equation a(x^2 + y^2)z^2 = z^4 + dx^2y^2
Expand All @@ -220,14 +225,6 @@ mod curvegroup {
Self {x, y, t, z}
}

// Check for equality
fn eq(self, p: Point) -> bool {
let Self {x: x1, y: y1, t: _t1, z: z1} = self;
let Self {x: x2, y: y2, t: _t2, z:z2} = p;

(x1*z2 == x2*z1) & (y1*z2 == y2*z1)
}

// Check if zero
pub fn is_zero(self) -> bool {
let Self {x, y, t, z} = self;
Expand Down Expand Up @@ -259,6 +256,15 @@ mod curvegroup {
}
}

impl Eq for Point {
fn eq(self, p: Self) -> bool {
let Self {x: x1, y: y1, t: _t1, z: z1} = self;
let Self {x: x2, y: y2, t: _t2, z:z2} = p;

(x1*z2 == x2*z1) & (y1*z2 == y2*z1)
}
}

impl Curve {
// Curve constructor
pub fn new(a: Field, d: Field, gen: Point) -> Curve {
Expand Down
Loading