environments: python 3.6.10, opencv 4.1.1, pytorch 1.3+
git clone https://github.com/nightmaredimple/libmot --recursive
cd libmot/
python setup.py install develop --user
The details can be seen from my blogs or zhihu.
Block | Method | Reference | Complete |
---|---|---|---|
IOU Assignment | iou-tracker&V-IOU | ✓ | |
Linear Assignment | - | ✓ | |
Data Association | MinCostFlow | MCF | ✓ |
Other End-to-End Network | DAN&DeepMOT | ☐ | |
GNN&GCN | MPNTrack | ☐ | |
----------------------- | ----------------------------------- | ---------------------- | --- |
Kalman Filter | Sort&DeepSort | ✓ | |
Motion | ECC | Tracktor++ | ✓ |
Epipolar Geometry | TNT | ✓ | |
----------------------- | ----------------------------------- | ---------------------- | --- |
Re-ID | - | ☐ | |
Appearance | Feature Fusion&Selection | - | ☐ |
DAN | DAN | ✓ | |
----------------------- | ----------------------------------- | ---------------------- | --- |
Detection | Faster RCNN + FPN | Tracktor++ | ☐ |
----------------------- | ----------------------------------- | ---------------------- | --- |
SOT | CF&Siam | KCF&CN | ☐ |
----------------------- | ----------------------------------- | ---------------------- | --- |
DataLoader | - | ✓ | |
Tricks | Spatial Blocking | - | ✓ |
----------------------- | ----------------------------------- | ---------------------- | --- |
Evaluation | - | ✓ | |
Others | Tracking Visualiztion | - | ✓ |
Feature Visualiztion | - | ☐ | |
----------------------- | ----------------------------------- | ---------------------- | --- |
Tracktor | MIFT(ours) | - | ☐ |
----------------------- | ----------------------------------- | ---------------------- | --- |
Detector | MIFD(ours) | - | ☐ |
python scripts/test_kalman_tracker.py
Our proposed MIFT and MIFD will be released upon acceptance.
In MOT Challenge, the MIFT tracktor is named as ISE-MOT, the MIFD detector is named as ISE-MOTDet.
Method | DataSets | MOTA↑ | IDF1↑ | MT↑ | ML↓ | FP↓ | FN↓ | ID Sw.↓ | Frag↓ | Hz↑ |
---|---|---|---|---|---|---|---|---|---|---|
MOT15 | 48.1 | 52.1 | 29.5% | 26.2% | 10246 | 20840 | 776 | 1197 | 6.7 | |
MIFT | MOT16 | 60.4 | 57.3 | 24.6% | 28.9% | 5510 | 66723 | 704 | 932 | 6.9 |
MOT17 | 60.1 | 56.2 | 28.1% | 27.8% | 22265 | 200077 | 2644 | 3206 | 7.2 |
Method | DataSets | AP↑ | MODA↑ | FAF↓ | Precision↑ | Recall↑ |
---|---|---|---|---|---|---|
MIFD | MOT17Det | 0.88 | 70.7 | 4.1 | 81.4 | 91.7 |
To be continued..