Skip to content
This repository has been archived by the owner on Oct 11, 2024. It is now read-only.

Commit

Permalink
[BugFix] [Kernel] Add Cutlass2x fallback kernels (vllm-project#5744)
Browse files Browse the repository at this point in the history
Co-authored-by: Varun Sundar Rabindranath <[email protected]>
  • Loading branch information
2 people authored and robertgshaw2-redhat committed Jun 23, 2024
1 parent 860a1d6 commit d7f0ece
Show file tree
Hide file tree
Showing 2 changed files with 54 additions and 6 deletions.
8 changes: 8 additions & 0 deletions csrc/quantization/cutlass_w8a8/common.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -17,3 +17,11 @@ inline uint32_t next_pow_2(uint32_t const num) {
return 1 << (CHAR_BIT * sizeof(num) - __builtin_clz(num - 1));
}

inline int get_cuda_max_shared_memory_per_block_opt_in(int const device) {
int max_shared_mem_per_block_opt_in = 0;
cudaDeviceGetAttribute(&max_shared_mem_per_block_opt_in,
cudaDevAttrMaxSharedMemoryPerBlockOptin,
device);
return max_shared_mem_per_block_opt_in;
}

52 changes: 46 additions & 6 deletions csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu
Original file line number Diff line number Diff line change
Expand Up @@ -250,12 +250,39 @@ void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
CUTLASS_CHECK(status);
}

template <typename Gemm, typename FallbackGemm, typename... EpilogueArgs>
void fallback_cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
// In some cases, the GPU isn't able to accommodate the
// shared memory requirements of the Gemm. In such cases, use
// the FallbackGemm instead.
static const int max_shared_mem_per_block_opt_in =
get_cuda_max_shared_memory_per_block_opt_in(0);

size_t const gemm_shared_mem_size =
sizeof(typename Gemm::KernelType::SharedStorage);
size_t const fallback_gemm_shared_mem_size =
sizeof(typename FallbackGemm::KernelType::SharedStorage);

if (gemm_shared_mem_size <= max_shared_mem_per_block_opt_in) {
return cutlass_gemm_caller<Gemm>(out, a, b,
std::forward<EpilogueArgs>(args)...);
} else {
TORCH_CHECK(fallback_gemm_shared_mem_size <=
max_shared_mem_per_block_opt_in);
return cutlass_gemm_caller<FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}

template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm80_config_default {
// This config is used in 2 cases,
// - M in (128, inf)
// - M in (64, 128] and N >= 8192
// Shared Memory required by this Gemm - 81920 bytes
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<128, 128, 64>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
Expand All @@ -271,6 +298,7 @@ struct sm80_config_M64 {
// This config is used in 2 cases,
// - M in (32, 64]
// - M in (64, 128] and N < 8192
// Shared Memory required by this Gemm - 122880 bytes
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<64, 128, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
Expand All @@ -284,6 +312,7 @@ template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm80_config_M32 {
// M in (16, 32]
// Shared Memory required by this Gemm - 61440 bytes
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<32, 64, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<32, 64, 64>;
Expand All @@ -297,6 +326,7 @@ template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm80_config_M16 {
// M in [1, 16]
// Shared Memory required by this Gemm - 51200 bytes
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<16, 64, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<16, 64, 64>;
Expand Down Expand Up @@ -331,35 +361,45 @@ void cutlass_gemm_sm80_dispatch(torch::Tensor& out, torch::Tensor const& a,
using Cutlass2xGemmM16 =
typename sm80_config_M16<InType, OutType, Epilogue>::Cutlass2xGemm;

// Due to shared memory requirements, some Gemms may fail to run on some
// GPUs. As the name indicates, the Fallback Gemm is used as an alternative
// in such cases.
// sm80_config_M16 has the least shared-memory requirement. However,
// based on some profiling, we select sm80_config_M32 as a better alternative
// performance wise.
using FallbackGemm =
typename sm80_config_M32<InType, OutType, Epilogue>::Cutlass2xGemm;

uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(16), next_pow_2(m)); // next power of 2
if (mp2 <= 16) {
// M in [1, 16]
return cutlass_gemm_caller<Cutlass2xGemmM16>(
return fallback_cutlass_gemm_caller<Cutlass2xGemmM16, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 32) {
// M in (16, 32]
return cutlass_gemm_caller<Cutlass2xGemmM32>(
return fallback_cutlass_gemm_caller<Cutlass2xGemmM32, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 64) {
// M in (32, 64]
return cutlass_gemm_caller<Cutlass2xGemmM64>(
return fallback_cutlass_gemm_caller<Cutlass2xGemmM64, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// M in (64, 128]
uint32_t const n = out.size(1);
bool const small_n = n < 8192;
if (small_n) {
return cutlass_gemm_caller<Cutlass2xGemmM128SmallN>(
return fallback_cutlass_gemm_caller<Cutlass2xGemmM128SmallN,
FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
return cutlass_gemm_caller<Cutlass2xGemmM128BigN>(
return fallback_cutlass_gemm_caller<Cutlass2xGemmM128BigN, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
} else {
// M in (128, inf)
return cutlass_gemm_caller<Cutlass2xGemmDefault>(
return fallback_cutlass_gemm_caller<Cutlass2xGemmDefault, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
Expand Down

0 comments on commit d7f0ece

Please sign in to comment.