Skip to content
This repository has been archived by the owner on Oct 11, 2024. It is now read-only.

Commit

Permalink
[Bugfix][Kernel] allow non-power-of-two head sizes in prefix prefill (v…
Browse files Browse the repository at this point in the history
  • Loading branch information
mmoskal authored and robertgshaw2-neuralmagic committed Apr 21, 2024
1 parent c70152b commit a3b843c
Show file tree
Hide file tree
Showing 2 changed files with 28 additions and 18 deletions.
2 changes: 1 addition & 1 deletion tests/kernels/test_prefix_prefill.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@

NUM_HEADS = [64]
NUM_QUERIES_PER_KV = [1, 8, 64]
HEAD_SIZES = [128]
HEAD_SIZES = [128, 96]
DTYPES = [torch.float16]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
Expand Down
44 changes: 27 additions & 17 deletions vllm/attention/ops/prefix_prefill.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,8 @@ def _fwd_kernel(
stride_v_cache_bl,
num_queries_per_kv: int,
BLOCK_M: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
BLOCK_DMODEL: tl.constexpr, # head size
BLOCK_DMODEL_PADDED: tl.constexpr, # head size padded to a power of 2
BLOCK_N: tl.constexpr,
):
cur_batch = tl.program_id(0)
Expand All @@ -59,26 +60,30 @@ def _fwd_kernel(
cur_batch_ctx_len = tl.load(B_Ctxlen + cur_batch)
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
cur_batch_query_len = cur_batch_seq_len - cur_batch_ctx_len

block_start_loc = BLOCK_M * start_m

# initialize offsets
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_DMODEL)
offs_d = tl.arange(0, BLOCK_DMODEL_PADDED)
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
off_q = (
(cur_batch_in_all_start_index + offs_m[:, None]) * stride_qbs +
cur_head * stride_qh + offs_d[None, :] * stride_qd)

q = tl.load(
Q + off_q,
mask=offs_m[:, None] < cur_batch_seq_len - cur_batch_ctx_len,
other=0.0)
dim_mask = tl.where(
tl.arange(0, BLOCK_DMODEL_PADDED) < BLOCK_DMODEL, 1, 0).to(tl.int1)

q = tl.load(Q + off_q,
mask=dim_mask[None, :] &
(offs_m[:, None] < cur_batch_query_len),
other=0.0)

# # initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL_PADDED], dtype=tl.float32)

for start_n in range(0, cur_batch_ctx_len, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
Expand All @@ -99,7 +104,8 @@ def _fwd_kernel(
offs_d[None, :] * stride_v_cache_d +
(start_n + offs_n[:, None]) % block_size * stride_v_cache_bl)
k = tl.load(K_cache + off_k,
mask=(start_n + offs_n[None, :]) < cur_batch_ctx_len,
mask=dim_mask[:, None] &
((start_n + offs_n[None, :]) < cur_batch_ctx_len),
other=0.0)

qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
Expand All @@ -126,7 +132,8 @@ def _fwd_kernel(
acc = acc * acc_scale[:, None]
# update acc
v = tl.load(V_cache + off_v,
mask=(start_n + offs_n[:, None]) < cur_batch_ctx_len,
mask=dim_mask[None, :] &
((start_n + offs_n[:, None]) < cur_batch_ctx_len),
other=0.0)

p = p.to(v.dtype)
Expand All @@ -142,16 +149,15 @@ def _fwd_kernel(
k_ptrs = K + off_k
v_ptrs = V + off_v

block_mask = tl.where(
block_start_loc < cur_batch_seq_len - cur_batch_ctx_len, 1, 0)
block_mask = tl.where(block_start_loc < cur_batch_query_len, 1, 0)

for start_n in range(0, block_mask * (start_m + 1) * BLOCK_M, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
# -- compute qk ----
k = tl.load(k_ptrs +
(cur_batch_in_all_start_index + start_n) * stride_kbs,
mask=(start_n + offs_n[None, :]) <
cur_batch_seq_len - cur_batch_ctx_len,
mask=dim_mask[:, None] &
((start_n + offs_n[None, :]) < cur_batch_query_len),
other=0.0)

qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
Expand Down Expand Up @@ -179,8 +185,8 @@ def _fwd_kernel(
# update acc
v = tl.load(v_ptrs +
(cur_batch_in_all_start_index + start_n) * stride_vbs,
mask=(start_n + offs_n[:, None]) <
cur_batch_seq_len - cur_batch_ctx_len,
mask=dim_mask[None, :] &
((start_n + offs_n[:, None]) < cur_batch_query_len),
other=0.0)

p = p.to(v.dtype)
Expand All @@ -195,7 +201,8 @@ def _fwd_kernel(
out_ptrs = Out + off_o
tl.store(out_ptrs,
acc,
mask=offs_m[:, None] < cur_batch_seq_len - cur_batch_ctx_len)
mask=dim_mask[None, :] &
(offs_m[:, None] < cur_batch_query_len))
return

@triton.jit
Expand Down Expand Up @@ -636,7 +643,8 @@ def context_attention_fwd(q,
# shape constraints
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
assert Lq == Lk and Lk == Lv
assert Lk in {16, 32, 64, 128}
# round up Lk to a power of 2 - this is required for Triton block size
Lk_padded = 2**((Lk - 1).bit_length())

sm_scale = 1.0 / (Lq**0.5)
batch, head = b_seq_len.shape[0], q.shape[1]
Expand All @@ -646,6 +654,7 @@ def context_attention_fwd(q,

num_warps = 8 if Lk <= 64 else 8
if alibi_slopes is not None:
assert Lk == Lk_padded
_fwd_kernel_alibi[grid](
q,
k,
Expand Down Expand Up @@ -738,6 +747,7 @@ def context_attention_fwd(q,
num_queries_per_kv=num_queries_per_kv,
BLOCK_M=BLOCK,
BLOCK_DMODEL=Lk,
BLOCK_DMODEL_PADDED=Lk_padded,
BLOCK_N=BLOCK,
num_warps=num_warps,
num_stages=1,
Expand Down

0 comments on commit a3b843c

Please sign in to comment.