Skip to content
This repository has been archived by the owner on Oct 11, 2024. It is now read-only.

Commit

Permalink
Updating lm-format-enforcer version and adding links to decoding libr…
Browse files Browse the repository at this point in the history
…aries in docs (vllm-project#4222)
  • Loading branch information
noamgat authored and robertgshaw2-neuralmagic committed Apr 26, 2024
1 parent 41f9c9b commit 59e717b
Show file tree
Hide file tree
Showing 3 changed files with 8 additions and 4 deletions.
2 changes: 1 addition & 1 deletion requirements-common.txt
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ uvicorn[standard]
pydantic >= 2.0 # Required for OpenAI server.
prometheus_client >= 0.18.0
tiktoken == 0.6.0 # Required for DBRX tokenizer
lm-format-enforcer == 0.9.3
lm-format-enforcer == 0.9.8
outlines == 0.0.34 # Requires torch >= 2.1.0
typing_extensions
filelock >= 3.10.4 # filelock starts to support `mode` argument from 3.10.4
6 changes: 5 additions & 1 deletion vllm/engine/arg_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -201,7 +201,11 @@ def add_cli_args(
default='outlines',
choices=['outlines', 'lm-format-enforcer'],
help='Which engine will be used for guided decoding'
' (JSON schema / regex etc).')
' (JSON schema / regex etc) by default. Currently support '
'https://github.com/outlines-dev/outlines and '
'https://github.com/noamgat/lm-format-enforcer.'
' Can be overridden per request via guided_decoding_backend'
' parameter.')
# Parallel arguments
parser.add_argument('--worker-use-ray',
action='store_true',
Expand Down
4 changes: 2 additions & 2 deletions vllm/model_executor/layers/quantization/fp8.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Tuple

import torch
from torch.nn import Module
Expand Down Expand Up @@ -114,7 +114,7 @@ def apply_weights(self,
return output


def per_tensor_quantize(tensor: torch.Tensor) -> tuple[torch.Tensor, float]:
def per_tensor_quantize(tensor: torch.Tensor) -> Tuple[torch.Tensor, float]:
"""Quantize a tensor using per-tensor static scaling factor.
Args:
Expand Down

0 comments on commit 59e717b

Please sign in to comment.