Skip to content

Commit

Permalink
Merge branch 'networkx:main' into task1
Browse files Browse the repository at this point in the history
  • Loading branch information
achluma authored Oct 4, 2023
2 parents 81bf5b2 + ebe0777 commit 9cf6e8b
Show file tree
Hide file tree
Showing 6 changed files with 542 additions and 0 deletions.
30 changes: 30 additions & 0 deletions 2023-round-2/Schefflera-Arboricola/nx_tutorial_script.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
import networkx as nx
import matplotlib.pyplot as plt

# Creating a NetworkX DiGraph (Directed Graph) object
G=nx.DiGraph()

# Adding nodes of different types
nodes = [1, 'A', (3, 4), 'B', 5, 'C', (6, 7), 8, 'D', 'E']

G.add_nodes_from(nodes)

# Adding multiple edges between nodes
edges = [(1, 'A'), ('A', (3, 4)), ('A', 5), ((3, 4), 'B'), (5, 'B'), ('B', 8), (8, 'C'), ('C', 'D'), ('D', 'E'), ('E', 1)]

G.add_edges_from(edges)

# Finding the shortest path between all pairs of nodes
shortest_paths=dict(nx.all_pairs_shortest_path(G))

# Printing the shortest paths
for source_node, paths in shortest_paths.items():
for target_node,path in paths.items():
if source_node!=target_node:
print("Shortest path from node",source_node, "to node",target_node, "is : ", path)

# Plotting the graph using networkx.draw
pos=nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_size=500)
plt.title('Directed Graph')
plt.show()
2 changes: 2 additions & 0 deletions 2023-round-2/Tanya-Rawat/nx_version.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
3.1

1 change: 1 addition & 0 deletions 2023-round-2/Ytemiloluwa/nx_version.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
3.1
103 changes: 103 additions & 0 deletions 2023-round-2/akshayamadhuri/nx_dev_test_output.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
networkx\readwrite\json_graph\tests\test_tree.py ... [ 90%]
networkx\readwrite\tests\test_adjlist.py .................. [ 90%]
networkx\readwrite\tests\test_edgelist.py .......................... [ 90%]
networkx\readwrite\tests\test_gexf.py ..................... [ 91%]
networkx\readwrite\tests\test_gml.py ......................... [ 91%]
networkx\readwrite\tests\test_graph6.py ............................... [ 92%]
networkx\readwrite\tests\test_graphml.py ........................................................... [ 93%]
networkx\readwrite\tests\test_leda.py .. [ 93%]
networkx\readwrite\tests\test_p2g.py ... [ 93%]
networkx\readwrite\tests\test_pajek.py ........ [ 93%]
networkx\readwrite\tests\test_sparse6.py ................ [ 94%]
networkx\readwrite\tests\test_text.py ................................. [ 94%]
networkx\tests\test_all_random_functions.py s [ 94%]
networkx\tests\test_convert.py ............... [ 95%]
networkx\tests\test_convert_numpy.py .................................................. [ 95%]
networkx\tests\test_convert_pandas.py ...................... [ 96%]
networkx\tests\test_convert_scipy.py .................... [ 96%]
networkx\tests\test_exceptions.py ....... [ 96%]
networkx\tests\test_import.py .. [ 96%]
networkx\tests\test_lazy_imports.py .... [ 97%]
networkx\tests\test_relabel.py .............................. [ 97%]
networkx\utils\tests\test__init.py . [ 97%]
networkx\utils\tests\test_decorators.py ................................... [ 98%]
networkx\utils\tests\test_heaps.py .. [ 98%]
networkx\utils\tests\test_mapped_queue.py .............................................. [ 99%]
networkx\utils\tests\test_misc.py ............................... [ 99%]
networkx\utils\tests\test_random_sequence.py .... [ 99%]
networkx\utils\tests\test_rcm.py .. [ 99%]
networkx\utils\tests\test_unionfind.py ..... [100%]

================================================================ warnings summary ================================================================
networkx\algorithms\operators\product.py:347
C:\Users\aksha\networkx\networkx\algorithms\operators\product.py:347: DeprecationWarning: invalid escape sequence '\ '
"""Returns the specified power of a graph.

<class 'networkx.utils.decorators.argmap'> compilation 12:4
<class 'networkx.utils.decorators.argmap'> compilation 12:4: DeprecationWarning:

random_tree is deprecated and will be removed in NX v3.4
Use random_labeled_tree instead.

networkx\drawing\tests\test_pylab.py:422
C:\Users\aksha\networkx\networkx\drawing\tests\test_pylab.py:422: PytestUnknownMarkWarning: Unknown pytest.mark.mpl_image_compare - is this a typo? You can register custom marks to avoid this warning - for details, see https://docs.pytest.org/en/stable/how-to/mark.html
@pytest.mark.mpl_image_compare

networkx\readwrite\tests\test_gml.py:557
C:\Users\aksha\networkx\networkx\readwrite\tests\test_gml.py:557: DeprecationWarning: invalid octal escape sequence '\420'
"graph [edge [ source u'u\4200' target u'u\4200' ] "

networkx\readwrite\tests\test_gml.py:558
C:\Users\aksha\networkx\networkx\readwrite\tests\test_gml.py:558: DeprecationWarning: invalid octal escape sequence '\420'
+ "node [ id u'u\4200' label b ] ]"

networkx/algorithms/tree/tests/test_coding.py::TestNestedTuple::test_decoding
networkx/algorithms/tree/tests/test_coding.py::TestNestedTuple::test_decoding
networkx/algorithms/tree/tests/test_coding.py::TestNestedTuple::test_decoding
networkx/algorithms/tree/tests/test_coding.py::TestNestedTuple::test_sensible_relabeling
networkx/algorithms/tree/tests/test_coding.py::TestNestedTuple::test_sensible_relabeling
networkx/algorithms/tree/tests/test_coding.py::TestNestedTuple::test_sensible_relabeling
C:\Users\aksha\networkx\networkx\algorithms\tree\coding.py:198: DeprecationWarning: The function `join` is deprecated and is renamed `join_trees`.
The ``join`` function itself will be removed in v3.4
return nx.tree.join([(_make_tree(child), 0) for child in sequence])

networkx/drawing/tests/test_pylab.py::test_draw
C:\Users\aksha\anaconda3\Lib\site-packages\fontTools\misc\py23.py:11: DeprecationWarning: The py23 module has been deprecated and will be removed in a future release. Please update your code.
warnings.warn(

networkx/drawing/tests/test_pylab.py::test_house_with_colors
C:\Users\aksha\anaconda3\Lib\site-packages\_pytest\python.py:198: PytestReturnNotNoneWarning: Expected None, but networkx/drawing/tests/test_pylab.py::test_house_with_colors returned <Figure size 460.8x345.6 with 1 Axes>, which will be an error in a future version of pytest. Did you mean to use `assert` instead of `return`?
warnings.warn(

networkx/linalg/tests/test_algebraic_connectivity.py::TestSpectralOrdering::test_cycle[lobpcg-False-expected_order0]
C:\Users\aksha\networkx\networkx\linalg\algebraicconnectivity.py:302: UserWarning: Exited at iteration 10 with accuracies
[0.02743716]
not reaching the requested tolerance 1e-08.
Use iteration 11 instead with accuracy
0.027437158685216033.

sigma, X = sp.sparse.linalg.lobpcg(

networkx/linalg/tests/test_algebraic_connectivity.py::TestSpectralOrdering::test_cycle[lobpcg-False-expected_order0]
C:\Users\aksha\networkx\networkx\linalg\algebraicconnectivity.py:302: UserWarning: Exited postprocessing with accuracies
[0.02743716]
not reaching the requested tolerance 1e-08.
sigma, X = sp.sparse.linalg.lobpcg(

networkx/linalg/tests/test_algebraic_connectivity.py::TestSpectralOrdering::test_cycle[lobpcg-True-expected_order1]
C:\Users\aksha\networkx\networkx\linalg\algebraicconnectivity.py:302: UserWarning: Exited at iteration 10 with accuracies
[0.00056623]
not reaching the requested tolerance 1e-08.
Use iteration 11 instead with accuracy
0.0005662307712154687.

sigma, X = sp.sparse.linalg.lobpcg(

networkx/linalg/tests/test_algebraic_connectivity.py::TestSpectralOrdering::test_cycle[lobpcg-True-expected_order1]
C:\Users\aksha\networkx\networkx\linalg\algebraicconnectivity.py:302: UserWarning: Exited postprocessing with accuracies
[0.00056623]
not reaching the requested tolerance 1e-08.
sigma, X = sp.sparse.linalg.lobpcg(

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
=========================================== 5227 passed, 13 skipped, 17 warnings in 381.99s (0:06:21) ============================================
Loading

0 comments on commit 9cf6e8b

Please sign in to comment.