Skip to content

Commit

Permalink
[TOPI][RELAY][OP] add op crop_and_resize (apache#4417)
Browse files Browse the repository at this point in the history
* [TOPI][RELAY][OP] add op crop_and_resize

* fix pylint

* incorporate comments

* fix ci
  • Loading branch information
yongwww authored and zhiics committed Mar 2, 2020
1 parent 6e5cc4c commit cc77775
Show file tree
Hide file tree
Showing 15 changed files with 1,018 additions and 202 deletions.
2 changes: 2 additions & 0 deletions docs/api/python/topi.rst
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,7 @@ List of operators
topi.ndarray_size
topi.layout_transform
topi.image.resize
topi.image.crop_and_resize
topi.argsort
topi.topk
topi.sequence_mask
Expand Down Expand Up @@ -207,6 +208,7 @@ topi.nn
topi.image
~~~~~~~~~~
.. autofunction:: topi.image.resize
.. autofunction:: topi.image.crop_and_resize

topi.sparse
~~~~~~~~~~~
Expand Down
2 changes: 2 additions & 0 deletions docs/langref/relay_op.rst
Original file line number Diff line number Diff line change
Expand Up @@ -169,6 +169,7 @@ This level enables additional math and transform operators.
:nosignatures:

tvm.relay.image.resize
tvm.relay.image.crop_and_resize
tvm.relay.vision.multibox_prior
tvm.relay.vision.multibox_transform_loc
tvm.relay.vision.nms
Expand Down Expand Up @@ -335,6 +336,7 @@ Level 4 Definitions
Level 5 Definitions
-------------------
.. autofunction:: tvm.relay.image.resize
.. autofunction:: tvm.relay.image.crop_and_resize
.. autofunction:: tvm.relay.vision.multibox_prior
.. autofunction:: tvm.relay.vision.multibox_transform_loc
.. autofunction:: tvm.relay.vision.nms
Expand Down
28 changes: 28 additions & 0 deletions include/tvm/relay/attrs/image.h
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,34 @@ struct ResizeAttrs : public tvm::AttrsNode<ResizeAttrs> {
}
};

/*! \brief Attributes used in image crop_and_resize operator */
struct CropAndResizeAttrs : public tvm::AttrsNode<CropAndResizeAttrs> {
Array<IndexExpr> crop_size;
std::string layout;
std::string method;
double extrapolation_value;
DataType out_dtype;

TVM_DECLARE_ATTRS(CropAndResizeAttrs, "relay.attrs.CropAndResizeAttrs") {
TVM_ATTR_FIELD(crop_size).set_default(NullValue<Array<IndexExpr> >())
.describe("Target Size.");
TVM_ATTR_FIELD(layout).set_default("NCHW")
.describe("Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
"dimensions respectively. Resize is applied on the 'H' and"
"'W' dimensions.");
TVM_ATTR_FIELD(method).set_default("bilinear")
.describe("Specify the mode to use for scaling."
"nearest_neighbor - Nearest Neighbor"
"bilinear - Bilinear Interpolation");
TVM_ATTR_FIELD(extrapolation_value).set_default(0.0)
.describe("Specify value for extrapolation.");
TVM_ATTR_FIELD(out_dtype)
.set_default(NullValue<DataType>())
.describe("Output data type.");
}
};

} // namespace relay
} // namespace tvm
#endif // TVM_RELAY_ATTRS_IMAGE_H_
43 changes: 8 additions & 35 deletions python/tvm/relay/frontend/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -546,47 +546,20 @@ def _impl(inputs, attr, params):
# input image is a 4-D tensor of shape [batch, image_height, image_width, depth]
# boxes is a 2-D tensor of shape [num_boxes, 4], 4 is for [y1, x1, y2, x2]
try:
boxes = _get_list_param(params, inputs[1])
box_ind = _get_list_param(params, inputs[2])
crop_size = _get_list_param(params, inputs[3])
except (IndexError, KeyError):
boxes = _infer_value(inputs[1], params).asnumpy().tolist()
box_ind = _infer_value(inputs[2], params).asnumpy().tolist()
crop_size = _infer_value(inputs[3], params).asnumpy().tolist()

data_shape = attr['_input_shapes'][inputs[0]]
data_dim = len(data_shape)
method = attr['method'].decode()

attrs = {}
attrs['size'] = crop_size
attrs['layout'] = 'NHWC'
if method.lower() == 'nearest':
method = 'nearest_neighbor' if method == 'nearest' else method
if method not in ['bilinear', 'nearest_neighbor']:
raise tvm.error.OpAttributeUnImplemented(
'Attribute method=nearest is not supported')
else:
attrs['coordinate_transformation_mode'] = 'align_corners'
attrs['method'] = 'bilinear'

out = None
begin = [0] * data_dim
size = data_shape[:]
for idx in box_ind:
# 1) Crop
# y is mapped to the image coordinate at y * (image_height - 1)
# x is mapped to the image coordinate at x * (image_width - 1)
begin[0] = idx
begin[1] = int(round(boxes[idx][0] * (data_shape[1] - 1)))
begin[2] = int(round(boxes[idx][1] * (data_shape[2] - 1)))
size[0] = idx + 1
size[1] = int(round((data_shape[1] - 1) * boxes[idx][2])) + 1
size[2] = int(round((data_shape[2] - 1) * boxes[idx][3])) + 1
res_crop = _op.strided_slice(inputs[0], begin=begin, end=size)

# 2) Resize
res_resize = get_relay_op('resize')(res_crop, **attrs)
out = _op.concatenate([out, res_resize], axis=0) if out else res_resize
return out
'Method {} is not supported'.format(method))
layout = attr['layout'] if 'layout' in attr else 'NHWC'
extrapolation_value = attr['extrapolation_value']

return get_relay_op("crop_and_resize")(inputs[0], inputs[1], inputs[2], crop_size,
layout, method, extrapolation_value)
return _impl

def _cast():
Expand Down
16 changes: 15 additions & 1 deletion python/tvm/relay/op/image/_image.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,6 @@
# resize
reg.register_schedule("image.resize", schedule_injective)


@reg.register_compute("image.resize")
def compute_resize(attrs, inputs, out_type, target):
size = attrs.size
Expand All @@ -34,3 +33,18 @@ def compute_resize(attrs, inputs, out_type, target):
coord_trans = attrs.coordinate_transformation_mode
out_dtype = attrs.out_dtype
return [topi.image.resize(inputs[0], size, layout, method, coord_trans, out_dtype)]


# crop and resize
reg.register_schedule("image.crop_and_resize", schedule_injective)

@reg.register_compute("image.crop_and_resize")
def compute_crop_and_resize(attrs, inputs, out_type, target):
crop_size = attrs.crop_size
layout = attrs.layout
method = attrs.method
extrapolation_value = attrs.extrapolation_value
out_dtype = attrs.out_dtype
return [topi.image.crop_and_resize(inputs[0], inputs[1], inputs[2],
crop_size, layout, method,
extrapolation_value, out_dtype)]
52 changes: 51 additions & 1 deletion python/tvm/relay/op/image/image.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ def resize(data,
with data of shape (n, c, h, w)
out will have a shape (n, c, size[0], size[1])
method indicates the algorithm to be used while calculating ghe out value
method indicates the algorithm to be used while calculating the out value
and method can be one of ("bilinear", "nearest_neighbor", "bicubic")
Parameters
Expand Down Expand Up @@ -63,3 +63,53 @@ def resize(data,
The resized result.
"""
return _make.resize(data, size, layout, method, coordinate_transformation_mode, out_dtype)


def crop_and_resize(data,
boxes,
box_indices,
crop_size,
layout,
method="bilinear",
extrapolation_value=0,
out_dtype=None):
"""Crop input images and resize them.
method indicates the algorithm to be used while calculating the out value
and method can be either "bilinear" or "nearest_neighbor".
Parameters
----------
data : relay.Expr
The input data to the operator.
boxes : relay.Expr
A 2-D tensor of shape [num_boxes, 4]. Each row of the tensor specifies
the coordinates of a box.
box_indices : relay.Expr
A 1-D tensor of shape [num_boxes], box_ind[i] specifies the data that
the i-th box refers to.
crop_size : Tuple of Expr
The target size to which each box will be resized.
layout : str, optional
Layout of the input.
method : str, optional
Scale method, it can be either "nearest_neighbor" or "bilinear".
extrapolation_value : float, optional
Value used for extrapolation, when applicable.
out_dtype : str, optional
Type to return. If left None returns the same type as input.
Returns
-------
result: relay.Expr
The computed result.
"""
return _make.crop_and_resize(data, boxes, box_indices, crop_size,
layout, method, extrapolation_value, out_dtype)
3 changes: 3 additions & 0 deletions python/tvm/relay/op/op_attrs.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,9 @@ class DeformableConv2DAttrs(Attrs):
class ResizeAttrs(Attrs):
"""Attributes for image.resize"""

@register_relay_attr_node
class CropAndResizeAttrs(Attrs):
"""Attributes for image.crop_and_resize"""

@register_relay_attr_node
class ArgsortAttrs(Attrs):
Expand Down
12 changes: 6 additions & 6 deletions src/lang/expr_operator.cc
Original file line number Diff line number Diff line change
Expand Up @@ -246,8 +246,8 @@ PrimExpr div(PrimExpr a, PrimExpr b) {
}

PrimExpr truncdiv(PrimExpr a, PrimExpr b) {
CHECK(a.dtype().is_int() || a.dtype().is_uint());
CHECK(b.dtype().is_int() || b.dtype().is_uint());
CHECK(a.dtype().is_int() || a.dtype().is_uint()) << a;
CHECK(b.dtype().is_int() || b.dtype().is_uint()) << b;
return div(a, b);
}

Expand Down Expand Up @@ -276,17 +276,17 @@ PrimExpr indexmod(PrimExpr a, PrimExpr b) {
}

PrimExpr floordiv(PrimExpr a, PrimExpr b) {
CHECK(a.dtype().is_int() || a.dtype().is_uint());
CHECK(b.dtype().is_int() || b.dtype().is_uint());
CHECK(a.dtype().is_int() || a.dtype().is_uint()) << a;
CHECK(b.dtype().is_int() || b.dtype().is_uint()) << b;
BinaryOpMatchTypes(a, b);
PrimExpr ret = arith::TryConstFold<ir::FloorDivNode>(a, b);
if (ret.defined()) return ret;
return ir::FloorDivNode::make(a, b);
}

PrimExpr floormod(PrimExpr a, PrimExpr b) {
CHECK(a.dtype().is_int() || a.dtype().is_uint());
CHECK(b.dtype().is_int() || b.dtype().is_uint());
CHECK(a.dtype().is_int() || a.dtype().is_uint()) << a;
CHECK(b.dtype().is_int() || b.dtype().is_uint()) << b;
BinaryOpMatchTypes(a, b);
PrimExpr ret = arith::TryConstFold<ir::FloorModNode>(a, b);
if (ret.defined()) return ret;
Expand Down
84 changes: 84 additions & 0 deletions src/relay/op/image/resize.cc
Original file line number Diff line number Diff line change
Expand Up @@ -109,5 +109,89 @@ RELAY_REGISTER_OP("image.resize")
.add_type_rel("Resize", ResizeRel)
.set_attr<TOpPattern>("TOpPattern", kInjective);


TVM_REGISTER_NODE_TYPE(CropAndResizeAttrs);

bool CropAndResizeRel(const Array<Type>& types,
int num_inputs,
const Attrs& attrs,
const TypeReporter& reporter) {
CHECK_EQ(types.size(), 4);
const auto* data = types[0].as<TensorTypeNode>();
const auto* boxes = types[1].as<TensorTypeNode>();
const auto* box_indices = types[2].as<TensorTypeNode>();
if (data == nullptr || boxes == nullptr ||
box_indices == nullptr) return false;

const CropAndResizeAttrs* param = attrs.as<CropAndResizeAttrs>();
CHECK(param != nullptr);
auto crop_size = param->crop_size;

DataType out_dtype = param->out_dtype;
if (out_dtype.bits() == 0) {
out_dtype = data->dtype;
}

// 4-D tensor of shape [num_boxes, crop_height, crop_width, depth]
static const Layout kNCHW("NCHW");
const Layout in_layout(param->layout);
auto layout_converter = BijectiveLayoutNode::make(in_layout, kNCHW);
auto oshape = layout_converter.ForwardShape(data->shape);
oshape.Set(0, box_indices->shape[0]);
oshape.Set(2, crop_size[0]);
oshape.Set(3, crop_size[1]);
auto bshape = layout_converter.BackwardShape(oshape);
// assign output type
reporter->Assign(types[3],
TensorTypeNode::make(layout_converter.BackwardShape(oshape),
out_dtype));
return true;
}

Expr MakeCropAndResize(Expr data,
Expr boxes,
Expr box_indices,
Array<IndexExpr> crop_size,
std::string layout,
std::string method,
double extrapolation_value,
DataType out_dtype) {
auto attrs = make_object<CropAndResizeAttrs>();
attrs->crop_size = std::move(crop_size);
attrs->layout = std::move(layout);
attrs->method = std::move(method);
attrs->extrapolation_value = std::move(extrapolation_value);
attrs->out_dtype = out_dtype;
static const Op& op = Op::Get("image.crop_and_resize");
return CallNode::make(op, {data, boxes, box_indices}, Attrs(attrs), {});
}

TVM_REGISTER_GLOBAL("relay.op.image._make.crop_and_resize")
.set_body_typed(MakeCropAndResize);


RELAY_REGISTER_OP("image.crop_and_resize")
.describe(R"code(Perform crop and resize to input array with nearest neighbour or bilinear interpolation.
- **data**: data is 4D array of shape
(batch_size, channels, in_height, in_width) for NCHW
(batch_size, in_height, in_width, channels) for NHWC
- **out**: Output is 4D array of shape
for layout NCHW
(batch_size, channels, crop_size[0], crop_size[1])
for layout NHWC
(batch_size, crop_size[0], crop_size[1], channels)
)code" TVM_ADD_FILELINE)
.set_num_inputs(3)
.add_argument("data", "Tensor", "The input tensor.")
.add_argument("boxes", "Tensor", "The boxes tensor.")
.add_argument("box_indices", "Tensor", "The box indices tensor.")
.set_attrs_type<CropAndResizeAttrs>()
.set_support_level(5)
.add_type_rel("CropAndResize", CropAndResizeRel)
.set_attr<TOpPattern>("TOpPattern", kInjective);

} // namespace relay
} // namespace tvm
Loading

0 comments on commit cc77775

Please sign in to comment.