forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[RELAY/OP] Gradient of relay level1 ops (apache#2633)
- Loading branch information
1 parent
1fe20ac
commit c388b9c
Showing
7 changed files
with
168 additions
and
27 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
#pylint: disable=invalid-name, unused-argument | ||
"""Backend compiler related feature registration""" | ||
from __future__ import absolute_import | ||
from ..expr import const | ||
from .op import register_gradient | ||
from .transform import collapse_sum_like, where | ||
from .tensor import exp, negative, power, less | ||
from .tensor import zeros_like, ones_like | ||
|
||
|
||
@register_gradient("log") | ||
def log_grad(orig, grad): | ||
"""Returns [grad * (1 / x)]""" | ||
x = orig.args[0] | ||
return [grad * ones_like(x) / x] | ||
|
||
|
||
@register_gradient("exp") | ||
def exp_grad(orig, grad): | ||
"""Returns [grad * exp(x)]""" | ||
return [grad * exp(orig.args[0])] | ||
|
||
|
||
@register_gradient("sqrt") | ||
def sqrt_grad(orig, grad): | ||
"""Returns [grad * 0.5 * (x ^ -0.5)]""" | ||
a = const(0.5) # (TODO) type? | ||
return [grad * a * power(orig.args[0], negative(a))] | ||
|
||
|
||
@register_gradient("sigmoid") | ||
def sigmoid_grad(orig, grad): | ||
"""Returns [grad * sigmoid(x) * (1 - sigmoid(x))].""" | ||
return [grad * orig * (ones_like(orig) - orig)] | ||
|
||
|
||
@register_gradient("tanh") | ||
def tanh_grad(orig, grad): | ||
"""Returns grad * (1 - tanh(x) * tanh(x)).""" | ||
return [grad * ones_like(orig) - orig * orig] | ||
|
||
|
||
@register_gradient("nn.relu") | ||
def relu_grad(orig, grad): | ||
"""Returns grad * (select(x < 0, 0, 1)).""" | ||
x = orig.args[0] | ||
zeros = zeros_like(x) | ||
ones = ones_like(x) | ||
return [where(less(x, zeros), zeros, ones * grad)] | ||
|
||
|
||
@register_gradient("add") | ||
def add_grad(orig, grad): | ||
"""Returns [grad, grad]""" | ||
return [collapse_sum_like(grad, orig.args[0]), | ||
collapse_sum_like(grad, orig.args[1])] | ||
|
||
|
||
@register_gradient("subtract") | ||
def subtract_grad(orig, grad): | ||
"""Returns [grad, -grad]""" | ||
return [collapse_sum_like(grad, orig.args[0]), | ||
collapse_sum_like(negative(grad), orig.args[1])] | ||
|
||
|
||
@register_gradient("multiply") | ||
def multiply_grad(orig, grad): | ||
"""Returns [grad * y, grad * x]""" | ||
x, y = orig.args | ||
return [collapse_sum_like(grad * y, x), | ||
collapse_sum_like(grad * x, y)] | ||
|
||
|
||
@register_gradient("divide") | ||
def divide_grad(orig, grad): | ||
"""Returns [grad / y, - grad * (x / y) / y]""" | ||
x, y = orig.args | ||
return [collapse_sum_like(grad / y, x), | ||
collapse_sum_like(- (grad * orig / y), y)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
import tvm | ||
import numpy as np | ||
from tvm import relay | ||
from tvm.relay.ir_pass import gradient, infer_type | ||
from tvm.relay.testing import ctx_list | ||
|
||
def sigmoid(x): | ||
one = np.ones_like(x) | ||
return one / (one + np.exp(-x)) | ||
|
||
def relu(x): | ||
x_copy = np.copy(x) | ||
np.maximum(x_copy, 0, x_copy) | ||
return x_copy | ||
|
||
def test_unary_op(): | ||
def check_single_op(opfunc, ref): | ||
shape = (10, 4) | ||
dtype = 'float32' | ||
tp = relay.TensorType(shape, dtype) | ||
x = relay.var("x", tp) | ||
y = opfunc(x) | ||
|
||
if ref is not None: | ||
data = np.random.rand(*shape).astype(dtype) | ||
ref_grad = ref(data) | ||
fwd_func = relay.Function([x], y) | ||
bwd_func = infer_type(gradient(fwd_func)) | ||
|
||
for target, ctx in ctx_list(): | ||
intrp = relay.create_executor(ctx=ctx, target=target) | ||
op_res, (op_grad, ) = intrp.evaluate(bwd_func)(data) | ||
np.testing.assert_allclose(op_grad.asnumpy(), ref_grad, rtol=0.01) | ||
|
||
for opfunc, ref in [(tvm.relay.log, lambda x: 1 / x), | ||
(tvm.relay.exp, np.exp), | ||
(tvm.relay.sigmoid, lambda x: sigmoid(x) * (1 - sigmoid(x))), | ||
(tvm.relay.tanh, lambda x: 1 - np.tanh(x) * np.tanh(x)), | ||
(tvm.relay.sqrt, lambda x: 0.5 * np.power(x, -0.5)), | ||
(relay.nn.relu, lambda x: np.where(x < 0, np.zeros_like(x), np.ones_like(x)))]: | ||
check_single_op(opfunc, ref) | ||
|
||
|
||
def test_binary_op(): | ||
def inst(vars, sh): | ||
return [vars.get(s, s) for s in sh] | ||
|
||
def check_binary_op(opfunc, ref): | ||
s = (5, 10, 5) | ||
t = relay.TensorType((5, 10, 5)) | ||
x = relay.var("x", t) | ||
y = relay.var("y", t) | ||
z = opfunc(x, y) | ||
|
||
x_data = np.random.rand(*s).astype(t.dtype) | ||
y_data = np.random.rand(*s).astype(t.dtype) | ||
ref_grad0, ref_grad1 = ref(x_data, y_data) | ||
fwd_func = relay.Function([x, y], z) | ||
bwd_func = infer_type(gradient(fwd_func)) | ||
|
||
for target, ctx in ctx_list(): | ||
intrp = relay.create_executor(ctx=ctx, target=target) | ||
op_res, (op_grad0, op_grad1) = intrp.evaluate(bwd_func)(x_data, y_data) | ||
np.testing.assert_allclose(op_grad0.asnumpy(), ref_grad0, rtol=0.01) | ||
np.testing.assert_allclose(op_grad1.asnumpy(), ref_grad1, rtol=0.01) | ||
|
||
for opfunc, ref in [(relay.add, lambda x, y: [np.ones_like(x), np.ones_like(y)]), | ||
(relay.subtract, lambda x, y: [np.ones_like(x), -np.ones_like(y)]), | ||
(relay.multiply, lambda x, y: [y, x]), | ||
(relay.divide, lambda x, y: [1 / y, - x / (y**2)])]: | ||
check_binary_op(opfunc, ref) | ||
|
||
|
||
if __name__ == "__main__": | ||
test_unary_op() | ||
test_binary_op() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters