Skip to content

Commit

Permalink
[RELAY][AUTOTVM] Extract tuning tasks from Relay programs (apache#2181)
Browse files Browse the repository at this point in the history
  • Loading branch information
eqy authored and AWS Neo committed Feb 20, 2019
1 parent 9ae04e0 commit 497bc3d
Show file tree
Hide file tree
Showing 7 changed files with 477 additions and 207 deletions.
1 change: 1 addition & 0 deletions python/tvm/autotvm/task/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,3 +14,4 @@

from .topi_integration import register_topi_compute, register_topi_schedule
from .nnvm_integration import extract_from_graph, extract_from_multiple_graph
from .relay_integration import extract_from_program, extract_from_multiple_program
231 changes: 29 additions & 202 deletions python/tvm/autotvm/task/nnvm_integration.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,208 +7,13 @@
import logging


from ... import tensor, placeholder, create_schedule, target as _target
from ... import target as _target

from ..util import get_const_tuple
from .task import create, register
from .task import create
from .topi_integration import TaskExtractEnv

logger = logging.getLogger('autotvm')

def serialize_args(args):
"""serialize arguments of a topi function to a hashable tuple.
Parameters
----------
args: list of hashable or Tensor
"""
ret = []
for t in args:
if isinstance(t, tensor.Tensor):
ret.append(('TENSOR', get_const_tuple(t.shape), t.dtype))
else:
ret.append(t)
return tuple(ret)


def deserialize_args(args):
"""The inverse function of :code:`serialize_args`.
Parameters
----------
args: list of hashable or Tensor
"""
ret = []
for t in args:
if isinstance(t, tuple) and t[0] == 'TENSOR':
ret.append(placeholder(shape=t[1], dtype=t[2]))
else:
ret.append(t)
return ret


# Task extractor for nnvm graph
class TaskExtractEnv:
"""Global environment for extracting tuning tasks from nnvm graph"""
current = None

def __init__(self):
import topi
import nnvm

# NOTE: To add more symbols, you only need to change the following lists
# nnvm symbol -> topi compute
self.symbol2topi = {
nnvm.sym.conv2d: [topi.nn.conv2d, topi.nn.depthwise_conv2d_nchw,
topi.nn.group_conv2d_nchw],
nnvm.sym.conv2d_transpose: [topi.nn.conv2d_transpose_nchw],
nnvm.sym.dense: [topi.nn.dense],
}

# topi compute -> autotvm task name
self.topi_to_task = {
topi.nn.conv2d: "topi_nn_conv2d",
topi.nn.depthwise_conv2d_nchw: "topi_nn_depthwise_conv2d_nchw",
topi.nn.group_conv2d_nchw: "topi_nn_group_conv2d_nchw",
topi.nn.conv2d_transpose_nchw: "topi_nn_conv2d_transpose_nchw",
topi.nn.dense: "topi_nn_dense",
}

self.topi_to_schedule = {
topi.nn.conv2d: [topi.generic.schedule_conv2d_nchw,
topi.generic.schedule_conv2d_nhwc],
topi.nn.depthwise_conv2d_nchw: [topi.generic.schedule_depthwise_conv2d_nchw,
topi.generic.schedule_depthwise_conv2d_nhwc],
topi.nn.group_conv2d_nchw: [topi.generic.schedule_group_conv2d_nchw],
topi.nn.conv2d_transpose_nchw: [topi.generic.schedule_conv2d_transpose_nchw],
topi.nn.dense: [topi.generic.schedule_dense],
}

self._register_tracing()
self._register_topi_task()
self.task_collection = []
self.wanted_topi_funcs = list(self.topi_to_task.keys())

def _register_tracing(self):
"""Register tracing function to track the topi function call"""
# register topi compute for "tracing" target
for topi_compute in self.topi_to_task:
def _local_scope(compute_func):
"""start a scope to hold the local function in for loop"""

@compute_func.register("tracing", )
def _tracing_topi_compute(*args, **kwargs):
assert not kwargs, "Do not support extracting tuning tasks when" \
"kwargs is used in TOPI function call." \
"Please modify it to use only positional args."

if compute_func in self.wanted_topi_funcs: # record this call
key = (self.topi_to_task[compute_func], serialize_args(args))
if key not in self.task_collection:
self.task_collection.append(key)

return compute_func.fdefault(*args)
_local_scope(topi_compute)

# register topi schedule for "tracing" target
for topi_compute in self.topi_to_task:
for topi_schedule in self.topi_to_schedule[topi_compute]:
def _local_scope_(schedule_func):
"""start a scope to hold the local function in for loop"""

@schedule_func.register("tracing", )
def _tracing_topi_compute(outs):
outs = [outs] if isinstance(outs, tensor.Tensor) else outs
return create_schedule([x.op for x in outs])
_local_scope_(topi_schedule)

def _register_topi_task(self):
"""register tuning wrapper for topi function"""
import topi

# Tuning wrapper for topi functions
@register("topi_nn_conv2d")
def _topi_nn_conv2d(*args, **kwargs):
assert not kwargs, "Do not support kwargs in template function call"
args = deserialize_args(args)
A, W = args[:2]
layout = args[-2]
assert layout == 'NCHW', "only support NCHW currently"
C = topi.nn.conv2d(*args, **kwargs)
s = topi.generic.schedule_conv2d_nchw([C])
return s, [A, W, C]

@register("topi_nn_depthwise_conv2d_nchw")
def _topi_nn_depthwise_conv2d_nchw(*args, **kwargs):
assert not kwargs, "Do not support kwargs in template function call"
args = deserialize_args(args)
A, W = args[:2]
C = topi.nn.depthwise_conv2d_nchw(*args, **kwargs)
s = topi.generic.schedule_depthwise_conv2d_nchw([C])
return s, [A, W, C]

@register("topi_nn_group_conv2d_nchw")
def _topi_nn_group_conv2d_nchw(*args, **kwargs):
assert not kwargs, "Do not support kwargs in template function call"
args = deserialize_args(args)
A, W = args[:2]
C = topi.nn.group_conv2d_nchw(*args, **kwargs)
s = topi.generic.schedule_group_conv2d_nchw([C])
return s, [A, W, C]

@register("topi_nn_conv2d_transpose_nchw")
def _topi_nn_conv2d_transpose_nchw(*args, **kwargs):
assert not kwargs, "Do not support kwargs in template function call"
args = deserialize_args(args)
A, W = args[:2]
C = topi.nn.conv2d_transpose_nchw(*args, **kwargs)
s = topi.generic.schedule_conv2d_transpose_nchw([C])
return s, [A, W, C]

@register("topi_nn_dense")
def _topi_nn_dense(*args, **kwargs):
assert not kwargs, "Do not support kwargs in template function call"
args = deserialize_args(args)
data, weight, bias = args
C = topi.nn.dense(*args, **kwargs)
s = topi.generic.schedule_dense([C])
if bias is not None:
return s, [data, weight, bias, C]
return s, [data, weight, C]

def reset(self, wanted_topi_funcs):
"""Reset task collections
Parameters
----------
wanted_topi_funcs: List of function
The topi function to be extracted
"""
self.task_collection = []
self.wanted_topi_funcs = wanted_topi_funcs

def get_tasks(self):
"""Get collected tasks
Returns
-------
tasks: List of tuple(name, args)
A list of tasks extracted from the nnvm graph
"""
return self.task_collection

@staticmethod
def get():
"""Get the single instance of TaskExtractEnv
Returns
-------
env: TaskExtractEnv
The single instance of TaskExtractEnv
"""
if not TaskExtractEnv.current:
TaskExtractEnv.current = TaskExtractEnv()
return TaskExtractEnv.current


def extract_from_graph(graph, shape, dtype, target, symbols, target_host=None):
""" Extract tuning tasks from a nnvm graph.
Expand Down Expand Up @@ -237,13 +42,24 @@ def extract_from_graph(graph, shape, dtype, target, symbols, target_host=None):
collected tasks
"""
import nnvm.compiler
import nnvm
import topi

env = TaskExtractEnv.get()

#NOTE: To add more symbols, you only need to change the following lists
#nnvm symbol -> topi compute
SYMBOL2TOPI = {
nnvm.sym.conv2d: [topi.nn.conv2d, topi.nn.depthwise_conv2d_nchw,
topi.nn.group_conv2d_nchw],
nnvm.sym.conv2d_transpose: [topi.nn.conv2d_transpose_nchw],
nnvm.sym.dense: [topi.nn.dense],
}

topi_funcs = []
for sym_name in symbols:
if sym_name in env.symbol2topi:
topi_funcs.extend(env.symbol2topi[sym_name])
if sym_name in SYMBOL2TOPI:
topi_funcs.extend(SYMBOL2TOPI[sym_name])
else:
warnings.warn("Symbol %s is not tunable, ignored" % sym_name)

Expand Down Expand Up @@ -297,13 +113,24 @@ def extract_from_multiple_graph(graphs, shapes, dtypes, target, symbols, target_
collected tasks
"""
import nnvm.compiler
import nnvm
import topi

env = TaskExtractEnv.get()

#NOTE: To add more symbols, you only need to change the following lists
#nnvm symbol -> topi compute
SYMBOL2TOPI = {
nnvm.sym.conv2d: [topi.nn.conv2d, topi.nn.depthwise_conv2d_nchw,
topi.nn.group_conv2d_nchw],
nnvm.sym.conv2d_transpose: [topi.nn.conv2d_transpose_nchw],
nnvm.sym.dense: [topi.nn.dense],
}

topi_funcs = []
for sym_name in symbols:
if sym_name in env.symbol2topi:
topi_funcs.extend(env.symbol2topi[sym_name])
if sym_name in SYMBOL2TOPI:
topi_funcs.extend(SYMBOL2TOPI[sym_name])
else:
warnings.warn("Symbol %s is not tunable, ignored" % sym_name)

Expand Down
Loading

0 comments on commit 497bc3d

Please sign in to comment.