forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[RELAY][DOCS] Port from_mxnet tutorial to relay (apache#2608)
* check in * update build and run
- Loading branch information
Showing
1 changed file
with
86 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
""" | ||
.. _tutorial-from-mxnet: | ||
Compile MXNet Models | ||
==================== | ||
**Author**: `Joshua Z. Zhang <https://zhreshold.github.io/>`_, `Eddie Yan <https://github.com/eqy>`_ | ||
This article is an introductory tutorial to deploy mxnet models with Relay. | ||
For us to begin with, mxnet module is required to be installed. | ||
A quick solution is | ||
.. code-block:: bash | ||
pip install mxnet --user | ||
or please refer to offical installation guide. | ||
https://mxnet.incubator.apache.org/versions/master/install/index.html | ||
""" | ||
# some standard imports | ||
import mxnet as mx | ||
from tvm import relay | ||
import tvm | ||
import numpy as np | ||
|
||
###################################################################### | ||
# Download Resnet18 model from Gluon Model Zoo | ||
# --------------------------------------------- | ||
# In this section, we download a pretrained imagenet model and classify an image. | ||
from mxnet.gluon.model_zoo.vision import get_model | ||
from mxnet.gluon.utils import download | ||
from PIL import Image | ||
from matplotlib import pyplot as plt | ||
block = get_model('resnet18_v1', pretrained=True) | ||
|
||
img_name = 'cat.png' | ||
synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/', | ||
'4d0b62f3d01426887599d4f7ede23ee5/raw/', | ||
'596b27d23537e5a1b5751d2b0481ef172f58b539/', | ||
'imagenet1000_clsid_to_human.txt']) | ||
synset_name = 'synset.txt' | ||
download('https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true', img_name) | ||
download(synset_url, synset_name) | ||
with open(synset_name) as f: | ||
synset = eval(f.read()) | ||
image = Image.open(img_name).resize((224, 224)) | ||
plt.imshow(image) | ||
plt.show() | ||
|
||
def transform_image(image): | ||
image = np.array(image) - np.array([123., 117., 104.]) | ||
image /= np.array([58.395, 57.12, 57.375]) | ||
image = image.transpose((2, 0, 1)) | ||
image = image[np.newaxis, :] | ||
return image | ||
|
||
x = transform_image(image) | ||
print('x', x.shape) | ||
|
||
###################################################################### | ||
# Compile the Graph | ||
# ----------------- | ||
# Now we would like to port the Gluon model to a portable computational graph. | ||
# It's as easy as several lines. | ||
# We support MXNet static graph(symbol) and HybridBlock in mxnet.gluon | ||
input_shape = (1, 3, 224, 224) | ||
dtype = 'float32' | ||
net, params = relay.frontend.from_mxnet(block, shape={'data': input_shape}, dtype=dtype) | ||
# we want a probability so add a softmax operator | ||
net = relay.Function(net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs) | ||
|
||
###################################################################### | ||
# now compile the graph | ||
target = 'cuda' | ||
shape_dict = {'data': x.shape} | ||
with relay.build_config(opt_level=3): | ||
intrp = relay.build_module.create_executor('graph', net, tvm.gpu(0), target) | ||
|
||
###################################################################### | ||
# Execute the portable graph on TVM | ||
# --------------------------------- | ||
# Now, we would like to reproduce the same forward computation using TVM. | ||
tvm_output = intrp.evaluate(net)(tvm.nd.array(x.astype(dtype)), **params) | ||
top1 = np.argmax(tvm_output.asnumpy()[0]) | ||
print('TVM prediction top-1:', top1, synset[top1]) |