Skip to content

Commit

Permalink
Additional MXNet Convolution and Deconvolution tests (apache#4026)
Browse files Browse the repository at this point in the history
Add different batch sizes and channel numbers to
MXNet Convolution and Deconvolution tests.
  • Loading branch information
alexgl-github authored and wweic committed Oct 1, 2019
1 parent 4fdbad6 commit 399fc28
Showing 1 changed file with 14 additions and 2 deletions.
16 changes: 14 additions & 2 deletions tests/python/frontend/mxnet/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -833,7 +833,7 @@ def verify(data_shape, out_shape, begin, end):

def test_forward_convolution():
def verify(data_shape, kernel_size, stride, pad, num_filter):
weight_shape=(num_filter,1,) + kernel_size
weight_shape=(num_filter, data_shape[1],) + kernel_size
x = np.random.uniform(size=data_shape).astype("float32")
weight = np.random.uniform(size=weight_shape).astype("float32")
bias = np.random.uniform(size=num_filter).astype("float32")
Expand All @@ -852,11 +852,17 @@ def verify(data_shape, kernel_size, stride, pad, num_filter):
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy(), rtol=1e-3)

verify(data_shape=(1,1,1024*16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4)
verify(data_shape=(20,1,1024*16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4)
verify(data_shape=(1,8,1024*16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4)
verify(data_shape=(20,8,1024*16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4)
verify(data_shape=(1, 1, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2)
verify(data_shape=(20, 1, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2)
verify(data_shape=(1, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2)
verify(data_shape=(20, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2)

def test_forward_deconvolution():
def verify(data_shape, kernel_size, stride, pad, num_filter):
weight_shape=(1, num_filter) + kernel_size
weight_shape=(data_shape[1], num_filter) + kernel_size
x = np.random.uniform(size=data_shape).astype("float32")
weight = np.random.uniform(size=weight_shape).astype("float32")
bias = np.random.uniform(size=num_filter).astype("float32")
Expand All @@ -875,7 +881,13 @@ def verify(data_shape, kernel_size, stride, pad, num_filter):
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy(), rtol=1e-3)

verify(data_shape=(1,1,1024*16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4)
verify(data_shape=(20,1,1024*16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4)
verify(data_shape=(1,8,1024*16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4)
verify(data_shape=(20,8,1024*16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4)
verify(data_shape=(1, 1, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2)
verify(data_shape=(20, 1, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2)
verify(data_shape=(1, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2)
verify(data_shape=(20, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2)


if __name__ == '__main__':
Expand Down

0 comments on commit 399fc28

Please sign in to comment.