forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[topi] add ARM v8.2 udot (uint8) support (apache#3978)
* [topi] add ARM v8.2 udot (uint8) support * fix test case * fix common conv2d schedule * add back fp32_time in test * fix lint * fix doc, add support for int32_lanes=4, signed int * fix lint * add ic_bn % 4 checker in schedule
- Loading branch information
Showing
9 changed files
with
633 additions
and
171 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=invalid-name,unused-variable,unused-argument,no-member | ||
"""Conv2D int8 schedule on ARM""" | ||
|
||
import tvm | ||
from tvm import autotvm | ||
from .. import generic, tag | ||
from ..util import get_const_tuple | ||
from ..nn.conv2d import conv2d_NCHWc_int8 | ||
from ..generic import conv2d as conv2d_generic | ||
from .. import nn | ||
from ..nn.conv2d import _get_workload as _get_conv2d_workload | ||
from .tensor_intrin import dot_int8_int8_int32 | ||
|
||
|
||
def _get_default_config(cfg, data, kernel, strides, padding, out_dtype): | ||
""" | ||
Get default int8 schedule config for the workload | ||
""" | ||
wkl = _get_conv2d_workload(data, kernel, strides, padding, out_dtype) | ||
is_kernel_1x1 = wkl.hkernel == 1 and wkl.wkernel == 1 | ||
if is_kernel_1x1: | ||
conv2d_generic.fallback_schedule_cpu_1x1_int8( | ||
cfg, wkl, int32_lanes=2, num_int8_elements=4) | ||
else: | ||
conv2d_generic.fallback_schedule_cpu_common_int8( | ||
cfg, wkl, int32_lanes=2, num_int8_elements=4) | ||
|
||
|
||
@autotvm.register_topi_compute(conv2d_NCHWc_int8, ['arm_cpu'], 'direct') | ||
def _declaration_conv_NCHWc_int8(cfg, data, kernel, strides, | ||
padding, dilation, layout, out_layout, out_dtype): | ||
# layout and out_layout are not used here, | ||
# we keep them for debug convenience when dumping autotvm workload | ||
n, ic_chunk, ih, iw, ic_bn = get_const_tuple(data.shape) | ||
in_channel = ic_chunk * ic_bn | ||
|
||
oc_chunk, ic_chunk, kh, kw, ic_bn, oc_bn, n_elems = get_const_tuple(kernel.shape) | ||
num_filter = oc_chunk * oc_bn | ||
|
||
# If no config was set, we can fallback to NCHW config. | ||
if cfg.is_fallback: | ||
_get_default_config(cfg, tvm.placeholder((n, in_channel, ih, iw), dtype=data.dtype), | ||
tvm.placeholder((num_filter, in_channel, kh, kw), dtype=kernel.dtype), | ||
strides, padding, out_dtype) | ||
return nn.conv2d_NCHWc_int8_compute(data, | ||
kernel, | ||
strides, | ||
padding, | ||
dilation, | ||
layout, | ||
out_layout, | ||
out_dtype) | ||
|
||
|
||
@autotvm.register_topi_schedule(generic.schedule_conv2d_NCHWc_int8, ['arm_cpu'], ['direct']) | ||
def _schedule_conv2d_NCHWc_int8(cfg, outs): | ||
"""Create schedule for tensors""" | ||
s = tvm.create_schedule([x.op for x in outs]) | ||
scheduled_ops = [] | ||
|
||
def traverse(op): | ||
"""Traverse operators from computation graph""" | ||
# inline all one-to-one-mapping operators except the last stage (output) | ||
if tag.is_broadcast(op.tag): | ||
if op not in s.outputs: | ||
s[op].compute_inline() | ||
for tensor in op.input_tensors: | ||
if isinstance(tensor.op, tvm.tensor.ComputeOp) and tensor.op not in scheduled_ops: | ||
traverse(tensor.op) | ||
|
||
if 'conv2d_NCHWc_int8' in op.tag: | ||
conv_out = op.output(0) | ||
kernel = conv_out.op.input_tensors[1] | ||
data_vec = conv_out.op.input_tensors[0] | ||
data = data_vec.op.input_tensors[0] \ | ||
if isinstance(data_vec.op, tvm.tensor.ComputeOp) and "pad" not in data_vec.op.tag \ | ||
else data_vec | ||
if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag: | ||
data_pad = data | ||
data = data_pad.op.input_tensors[0] | ||
|
||
args = [s, cfg, data_vec, conv_out, outs[0]] | ||
# int8 conv kernel is 7-dim | ||
_, _, kh, kw, _, _, _ = get_const_tuple(kernel.shape) | ||
dtype = "uint" if data.dtype == "uint8" else "int" | ||
if kh == 1 and kw == 1: | ||
conv2d_generic.schedule_conv_NCHWc_cpu_1x1_int8( | ||
*args, int32_lanes=4, intrin=dot_int8_int8_int32(int32_lanes=4, dtype=dtype)) | ||
else: | ||
conv2d_generic.schedule_conv_NCHWc_cpu_common_int8( | ||
*args, int32_lanes=4, intrin=dot_int8_int8_int32(int32_lanes=4, dtype=dtype)) | ||
|
||
scheduled_ops.append(op) | ||
|
||
traverse(outs[0].op) | ||
return s |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=invalid-name,unused-variable,unused-argument,no-member | ||
"""Conv2D int8 schedule on ARM""" | ||
|
||
import tvm | ||
|
||
def dot_int8_int8_int32(int32_lanes, dtype='uint'): | ||
""" | ||
Int8 dot product by every 4 elements using ARM v8.2 udot. | ||
This function takes two arrays of int8 datatype -- data[4] and | ||
kernel[int32_lanes][4] -- and computes a dot product of data[4] with every | ||
4 elements of kernels, resulting in output[int32_lanes] of uint32 datatype. | ||
The pseudo code is as follows. | ||
.. code-block:: c | ||
void dot_int8_int8_int32(int8 data[4], int8 kernel[16][4], int32 output[16]){ | ||
for (int i = 0; i < int32_lanes; i++){ | ||
out[i] = 0; | ||
for (int k = 0; k < 4; k++){ | ||
out[i] += data[k] * kernel[i][k] | ||
} | ||
} | ||
} | ||
Physically, the kernel array sits in a vector register and | ||
the data[4] is broadcasted to another vector register. This | ||
function returns a TensorIntrin that can be used to tensorize | ||
a schedule. | ||
Parameters | ||
---------- | ||
int32_lanes: int | ||
How many int32/uint32 to produce | ||
dtype: str, optional, {"uint", "int"} | ||
Whether it works on unsigned int or signed int | ||
Returns | ||
------- | ||
intrin : TensorIntrin | ||
The ARM uint8 TensorIntrin that can be used in tensorizing schedule | ||
""" | ||
num_int8_elements = 4 # 4 int8 elements in int32 | ||
|
||
data = tvm.placeholder((num_int8_elements,), dtype='%s8' % dtype, name='data') | ||
kernel = tvm.placeholder((int32_lanes, num_int8_elements), dtype='%s8' % dtype, name='kernel') | ||
|
||
k = tvm.reduce_axis((0, num_int8_elements), name='k') | ||
C = tvm.compute((int32_lanes,), | ||
lambda i: tvm.sum(data[k].astype('%s32' % dtype) * | ||
kernel[i, k].astype('%s32' % dtype), | ||
axis=k), name="C") | ||
|
||
a_buffer = tvm.decl_buffer(data.shape, dtype='%s8' % dtype, name="a_buffer", | ||
offset_factor=1, | ||
strides=[1]) | ||
b_buffer = tvm.decl_buffer(kernel.shape, dtype='%s8' % dtype, name="b_buffer", | ||
offset_factor=1, | ||
strides=[tvm.var('s'), 1]) | ||
|
||
def _intrin_func(ins, outs): | ||
def _instr(index): | ||
ib = tvm.ir_builder.create() | ||
if index == 1: | ||
ib.emit(outs[0].vstore(0, tvm.const(0, '%s32x%d' % (dtype, int32_lanes)))) | ||
return ib.get() | ||
|
||
dtype_a = '%s8x%d' % (dtype, num_int8_elements) | ||
dtype_b = '%s8x%d' % (dtype, int32_lanes * num_int8_elements) | ||
dtype_c = '%s32x%d' % (dtype, int32_lanes) | ||
|
||
a_int8 = ins[0].vload([0], dtype_a) | ||
re_int32 = tvm.call_pure_intrin('%s32' % dtype, 'reinterpret', a_int8) | ||
# broadcast a | ||
vec_ai32 = re_int32.astype(dtype_c) | ||
|
||
vec_a = tvm.call_pure_intrin(dtype_b, 'reinterpret', vec_ai32) | ||
vec_b = ins[1].vload([0, 0], dtype_b) | ||
vec_c = outs[0].vload([0], dtype_c) | ||
|
||
inst = 'udot' if dtype == 'uint' else 'sdot' | ||
inst = 'llvm.aarch64.neon.%s.v%di32.v%di8' % ( | ||
inst, int32_lanes, int32_lanes * num_int8_elements) | ||
vdot = tvm.call_llvm_intrin(dtype_c, | ||
inst, | ||
tvm.const(2, 'uint32'), | ||
vec_c, vec_a, vec_b) | ||
ib.emit(outs[0].vstore(0, vdot)) | ||
return ib.get() | ||
|
||
# body, reset, update | ||
return _instr(0), _instr(1), _instr(2) | ||
|
||
with tvm.build_config(offset_factor=1, partition_const_loop=True): | ||
return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer}) |
Oops, something went wrong.