forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Relay] Add pass for getting calibration data from a relay module (ap…
…ache#5997) * add simple pass to extract outputs * complete pass that collects all function inputs/outputs * add analysis pass for collecting outputs * reorganize the files * add the first test * update test with tuples * clean up Python code * merge with upstream * clean up transform.py * add comments for cpp files * fix lint issues * update submodules * modify files according to the review * fix style and typo * fix lint error * add checks for repeated function calls * fix lint error * merge review comments * small simplification * revise the code according to the review comments * add username in TODO * use IRModule directly * use better APIs according to the review * apply comments from the reviewer * retrigger ci
- Loading branch information
1 parent
a5a88d0
commit 343232d
Showing
4 changed files
with
373 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* \file src/relay/analysis/get_calibration_data.cc | ||
* | ||
* \brief To get the calibration data, we need to perform two | ||
* steps. First, we need to prepare the module that generates | ||
* the tensor values (GetCalibrateModule). Second, we need to | ||
* generate the mapping between the values and the functions | ||
* (GetCalibrateOutputMap). | ||
*/ | ||
|
||
#include <tvm/relay/analysis.h> | ||
#include <tvm/relay/expr.h> | ||
#include <tvm/relay/expr_functor.h> | ||
|
||
namespace tvm { | ||
namespace relay { | ||
|
||
/*! | ||
* \brief This function returns a module that will be used by | ||
* the relay graph runtime for collecting the calibration data. | ||
* To do that, we first make all inputs and outputs of each | ||
* function into the final output (i.e., the final output is a | ||
* tuple of tensors). Then, we change the compiler attribute of | ||
* each function. Finally, we mark all function to be inlined. | ||
*/ | ||
|
||
class Collector : public ExprRewriter { | ||
public: | ||
explicit Collector(const IRModule& module) : module_(module) {} | ||
|
||
Expr Rewrite_(const CallNode* call, const Expr& post) final { | ||
// check if the function implementation is available | ||
// intrinsic functions are excluded for now | ||
if (call->op->IsInstance<GlobalVarNode>()) { | ||
auto var = Downcast<GlobalVar>(call->op); | ||
CHECK(module_->ContainGlobalVar(var->name_hint)) << "Function " << var << " is not defined"; | ||
// we only handle functions with Compiler attribute set | ||
auto func = Downcast<Function>(module_->Lookup(var)); | ||
if (func->GetAttr<String>(attr::kCompiler)) { | ||
// collect all the inputs and outputs | ||
for (const auto& it : call->args) new_outputs_.push_back(it); | ||
new_outputs_.push_back(post); | ||
} | ||
} | ||
return post; | ||
} | ||
|
||
Array<Expr> GetNewOutputs() { return new_outputs_; } | ||
|
||
private: | ||
const IRModule& module_; | ||
Array<Expr> new_outputs_; | ||
}; | ||
|
||
Expr FlattenOutputTuple(const Array<Expr>& exprs) { | ||
Array<Expr> fields; | ||
for (const auto& it : exprs) { | ||
CHECK(it->checked_type_.defined()); | ||
if (auto* tn = it->checked_type_.as<TupleTypeNode>()) { | ||
// TODO(seanlatias): for now input argument cannot be a tuple | ||
CHECK(it->IsInstance<CallNode>()); | ||
for (size_t i = 0; i < tn->fields.size(); i++) { | ||
fields.push_back(TupleGetItem(it, i)); | ||
} | ||
} else { | ||
fields.push_back(it); | ||
} | ||
} | ||
return Tuple(fields); | ||
} | ||
|
||
IRModule GetCalibrateModule(IRModule module) { | ||
auto glob_funcs = module->functions; | ||
// module is mutable, hence, we make a copy of it. | ||
module.CopyOnWrite(); | ||
for (const auto& pair : glob_funcs) { | ||
if (auto* fn = pair.second.as<FunctionNode>()) { | ||
auto func = GetRef<Function>(fn); | ||
// we only collect the outputs for main function | ||
if (pair.first->name_hint == "main") { | ||
Collector collector(module); | ||
PostOrderRewrite(func->body, &collector); | ||
auto new_outputs = collector.GetNewOutputs(); | ||
Expr tuple = FlattenOutputTuple(new_outputs); | ||
func = Function(func->params, tuple, tuple->checked_type_, func->type_params, func->attrs); | ||
module->Update(pair.first, func); | ||
} | ||
} | ||
} | ||
// reset the attribute of functions for running graph runtime | ||
for (const auto& pair : glob_funcs) { | ||
if (auto* fn = pair.second.as<FunctionNode>()) { | ||
auto func = GetRef<Function>(fn); | ||
if (func->GetAttr<String>(attr::kCompiler)) { | ||
// we need to inline the functions in order to run grpah runtime | ||
func = WithAttr(std::move(func), attr::kInline, tvm::Integer(1)); | ||
// reset the compiler attribute to null for llvm execution | ||
func = WithAttr(std::move(func), attr::kCompiler, NullValue<ObjectRef>()); | ||
module->Update(pair.first, func); | ||
} | ||
} | ||
} | ||
return module; | ||
} | ||
|
||
/*! | ||
* \brief This function generates the output mapping between | ||
* the calibration data and each function. The key is a | ||
* GlobalVar that corresponds to each function and the value | ||
* is an array of integers. The size of the array is always | ||
* three. The first value is the offset the points to the start. | ||
* The second value is the number of inputs. The third value | ||
* is the number of outputs. | ||
*/ | ||
|
||
class OutputMapper : public ExprRewriter { | ||
public: | ||
OutputMapper(Map<GlobalVar, Array<Integer>>* output_map, const IRModule& module, size_t* offset) | ||
: output_map_(output_map), module_(module), offset_(offset) {} | ||
|
||
Expr Rewrite_(const CallNode* call, const Expr& post) final { | ||
if (call->op->IsInstance<GlobalVarNode>()) { | ||
auto var = Downcast<GlobalVar>(call->op); | ||
CHECK(module_->ContainGlobalVar(var->name_hint)) << "Function " << var << " is not defined"; | ||
CHECK_EQ(output_map_->count(var), 0) | ||
<< "Repeated function call " << var << " is not supported."; | ||
auto func = Downcast<Function>(module_->Lookup(var)); | ||
// we only handle functions with Compiler attribute set | ||
if (func->GetAttr<String>(attr::kCompiler)) { | ||
Array<Integer> info; | ||
// the first value is the offset | ||
info.push_back(Integer(*offset_)); | ||
// the second value is the number of inputs | ||
info.push_back(Integer(call->args.size())); | ||
// the third value is the number of outputs | ||
// we need to check if the output is a tuple | ||
size_t out_size = 1; | ||
if (auto* tn = func->body.as<TupleNode>()) { | ||
info.push_back(Integer(tn->fields.size())); | ||
out_size = tn->fields.size(); | ||
} else { | ||
info.push_back(Integer(1)); | ||
} | ||
output_map_->Set(var, info); | ||
// calculate the offset for the next function | ||
*offset_ = *offset_ + call->args.size() + out_size; | ||
} | ||
} | ||
return post; | ||
} | ||
|
||
private: | ||
Map<GlobalVar, Array<Integer>>* output_map_; | ||
const IRModule& module_; | ||
size_t* offset_; | ||
}; | ||
|
||
Map<GlobalVar, Array<Integer>> GetCalibrateOutputMap(const IRModule& module) { | ||
Map<GlobalVar, Array<Integer>> output_map; | ||
size_t offset = 0; | ||
auto glob_funcs = module->functions; | ||
for (const auto& pair : glob_funcs) { | ||
if (auto* fn = pair.second.as<FunctionNode>()) { | ||
if (pair.first->name_hint == "main") { | ||
OutputMapper output_mapper(&output_map, module, &offset); | ||
auto func = GetRef<Function>(fn); | ||
PostOrderRewrite(func->body, &output_mapper); | ||
} | ||
} | ||
} | ||
|
||
return output_map; | ||
} | ||
|
||
TVM_REGISTER_GLOBAL("relay.analysis.get_calibrate_module").set_body_typed([](IRModule mod) { | ||
return GetCalibrateModule(mod); | ||
}); | ||
|
||
TVM_REGISTER_GLOBAL("relay.analysis.get_calibrate_output_map") | ||
.set_body_typed([](const IRModule& mod) { return GetCalibrateOutputMap(mod); }); | ||
|
||
} // namespace relay | ||
} // namespace tvm |
105 changes: 105 additions & 0 deletions
105
tests/python/relay/test_analysis_get_calibration_data.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
import numpy as np | ||
|
||
import tvm | ||
import tvm.relay.testing | ||
from tvm import relay | ||
from tvm.relay import transform | ||
from tvm.relay.analysis import get_calibration_data | ||
|
||
|
||
def check_data_size(mod, data): | ||
assert len(data) == len(mod.functions) - 1 | ||
for key, value in mod.functions.items(): | ||
if key.name_hint != "main": | ||
assert len(data[key]["inputs"]) == len(value.params) | ||
if isinstance(value.body, relay.Tuple): | ||
assert len(data[key]["outputs"]) == len(value.body.fields) | ||
else: | ||
assert len(data[key]["outputs"]) == 1 | ||
|
||
def test_simple_graph(): | ||
# A module with two subgraphs | ||
mod = tvm.IRModule() | ||
|
||
x0 = relay.var('x0', shape=(8, 8)) | ||
y0 = relay.var('y0', shape=(8, 8)) | ||
z0 = x0 + y0 | ||
z1 = x0 - y0 | ||
z2 = relay.Tuple((z0, z1)) | ||
f0 = relay.Function([x0, y0], z2) | ||
f0 = f0.with_attr("Compiler", "test_graph") | ||
g0 = relay.GlobalVar("g0") | ||
mod[g0] = f0 | ||
|
||
x1 = relay.var('x1', shape=(8, 8)) | ||
y1 = relay.var('y1', shape=(8, 8)) | ||
z1 = x1 - y1 | ||
f1 = relay.Function([x1, y1], z1) | ||
f1 = f1.with_attr("Compiler", "test_graph") | ||
g1 = relay.GlobalVar("g1") | ||
mod[g1] = f1 | ||
|
||
|
||
x = relay.var('x', shape=(8, 8)) | ||
y = relay.var('y', shape=(8, 8)) | ||
z = relay.var('z', shape=(8, 8)) | ||
c0 = relay.Call(g0, [x, y]) | ||
c1 = relay.Call(g1, [relay.TupleGetItem(c0, 0), z]) | ||
fm = relay.Function([x, y, z], c1) | ||
mod["main"] = fm | ||
|
||
x_data = np.random.rand(8, 8).astype('float32') | ||
y_data = np.random.rand(8, 8).astype('float32') | ||
z_data = np.random.rand(8, 8).astype('float32') | ||
data = get_calibration_data(mod, {"x": x_data, "y": y_data, "z": z_data}) | ||
|
||
# Check the number and orders | ||
check_data_size(mod, data) | ||
tvm.testing.assert_allclose(data[g0]["inputs"][0].asnumpy(), x_data) | ||
tvm.testing.assert_allclose(data[g0]["inputs"][1].asnumpy(), y_data) | ||
tvm.testing.assert_allclose(data[g0]["outputs"][0].asnumpy(), x_data + y_data) | ||
tvm.testing.assert_allclose(data[g0]["outputs"][1].asnumpy(), x_data - y_data) | ||
tvm.testing.assert_allclose(data[g1]["inputs"][0].asnumpy(), x_data + y_data) | ||
tvm.testing.assert_allclose(data[g1]["inputs"][1].asnumpy(), z_data) | ||
tvm.testing.assert_allclose(data[g1]["outputs"][0].asnumpy(), x_data + y_data - z_data) | ||
|
||
def test_mobilenet_dnnl(): | ||
if not tvm.get_global_func("relay.ext.dnnl", True): | ||
print("skip because DNNL codegen is not available") | ||
return | ||
|
||
dtype = 'float32' | ||
ishape = (1, 3, 224, 224) | ||
mod, params = relay.testing.mobilenet.get_workload( | ||
batch_size=1, dtype='float32') | ||
|
||
mod = transform.AnnotateTarget(["dnnl"])(mod) | ||
mod = transform.MergeCompilerRegions()(mod) | ||
mod = transform.PartitionGraph()(mod) | ||
|
||
i_data = np.random.uniform(0, 1, ishape).astype(dtype) | ||
data = get_calibration_data(mod, {"data": i_data, **params}) | ||
|
||
# Check the number and orders | ||
check_data_size(mod, data) | ||
|
||
if __name__ == "__main__": | ||
test_simple_graph() | ||
test_mobilenet_dnnl() |