Skip to content

Commit

Permalink
Refactor to expose MakeOp functions to C++ (apache#6047)
Browse files Browse the repository at this point in the history
* Initial Refactor

* add templated nn Make* functions

* fix build typo

* inline functions, fix unit tests
  • Loading branch information
Matthew Brookhart authored and trevor-m committed Jul 14, 2020
1 parent 6b18557 commit 0950905
Show file tree
Hide file tree
Showing 14 changed files with 347 additions and 271 deletions.
4 changes: 2 additions & 2 deletions python/tvm/relay/op/algorithm.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
# under the License.
"""Classic algorithm operation"""
from __future__ import absolute_import as _abs
import numpy as np

from . import _make
from .dyn import _make as _dyn_make
from ..expr import TupleWrapper, Expr, Constant
Expand Down Expand Up @@ -85,7 +85,7 @@ def topk(data, k=1, axis=-1, ret_type="both",
The computed result.
"""
if isinstance(k, Constant):
k = np.asscalar(k.data.asnumpy())
k = k.data.asnumpy().item()
if isinstance(k, Expr):
out = _dyn_make.topk(data, k, axis, ret_type, is_ascend, dtype)
else:
Expand Down
83 changes: 83 additions & 0 deletions src/relay/op/make_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
*
* \file tvm/relay/op/make_op.h
* \brief Header of internal operator functions
* to assist in creating ops in C++
*/
#ifndef TVM_RELAY_OP_MAKE_OP_H_
#define TVM_RELAY_OP_MAKE_OP_H_

#include <tvm/relay/expr.h>
#include <tvm/relay/op.h>

// Include Templated Make Functions
#include "nn/convolution_make.h"
#include "nn/pooling.h"

namespace tvm {
namespace relay {

Expr MakeBroadCastTo(Expr data, Expr shape);

Expr MakeCast(Expr data, DataType dtype);

Expr MakeClip(Expr a, double a_min, double a_max);

Expr MakeConcatenate(Expr data, int axis);

Expr MakeDense(Expr data, Expr weight, IndexExpr units, DataType out_dtype);

Expr MakeExpandDims(Expr data, int axis, int num_newaxis);

Expr MakeFull(Expr fill_value, Expr shape, DataType dtype);

Expr MakeLayoutTransform(Expr data, String src_layout, String dst_layout);

Expr MakeOnes(Expr shape, DataType dtype);

Expr MakePad(Expr data, Array<Array<IndexExpr>> pad_width, double pad_value, String pad_mode);

Expr MakeReduce(Expr data, Array<Integer> axis, bool keepdims, bool exclude, String op_name);

Expr MakeRepeat(Expr data, int repeats, int axis);

Expr MakeReshape(Expr data, Array<Integer> newshape);

Expr MakeSplit(Expr data, ObjectRef indices_or_sections, int axis);

Expr MakeSqueeze(Expr data, Array<Integer> axis);

Expr MakeStack(Expr data, int axis);

Expr MakeStridedSlice(Expr data, Expr begin, Expr end, Expr strides, String slice_mode);

Expr MakeTile(Expr data, Array<Integer> reps);

Expr MakeTopK(Expr data, int k, int axis, String ret_type, bool is_ascend, DataType dtype);

Expr MakeVariance(Expr data, Expr mean, Array<Integer> axis, bool keepdims, bool exclude);

Expr MakeZeros(Expr shape, DataType dtype);

} // namespace relay
} // namespace tvm
#endif // TVM_RELAY_OP_MAKE_OP_H_
107 changes: 1 addition & 106 deletions src/relay/op/nn/convolution.cc
Original file line number Diff line number Diff line change
Expand Up @@ -31,72 +31,11 @@

#include "../../transforms/infer_layout_util.h"
#include "../op_common.h"
#include "convolution_make.h"

namespace tvm {
namespace relay {

template <typename T>
Expr MakeConv(Expr data, Expr weight, Array<IndexExpr> strides, Array<IndexExpr> padding,
Array<IndexExpr> dilation, int groups, IndexExpr channels,
Array<IndexExpr> kernel_size, std::string data_layout, std::string kernel_layout,
std::string out_layout, DataType out_dtype, std::string op_name) {
auto attrs = make_object<T>();
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->out_dtype = std::move(out_dtype);
const Op& op = Op::Get(op_name);
return Call(op, {data, weight}, Attrs(attrs), {});
}

template <typename T>
Expr MakeConvWinograd(Expr data, Expr weight, int tile_size, Array<IndexExpr> strides,
Array<IndexExpr> padding, Array<IndexExpr> dilation, int groups,
IndexExpr channels, Array<IndexExpr> kernel_size, std::string data_layout,
std::string kernel_layout, std::string out_layout, DataType out_dtype,
std::string op_name) {
auto attrs = make_object<T>();
attrs->tile_size = tile_size;
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->out_dtype = std::move(out_dtype);
const Op& op = Op::Get(op_name);
return Call(op, {data, weight}, Attrs(attrs), {});
}

template <typename T>
Expr MakeConvGemm(Expr data, Expr weight, Array<IndexExpr> strides, Array<IndexExpr> padding,
Array<IndexExpr> dilation, int groups, IndexExpr channels,
Array<IndexExpr> kernel_size, std::string data_layout, std::string kernel_layout,
std::string out_layout, DataType out_dtype, std::string op_name) {
auto attrs = make_object<T>();
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->out_dtype = std::move(out_dtype);
const Op& op = Op::Get(op_name);
return Call(op, {data, weight}, Attrs(attrs), {});
}

Expr MakeConvWinogradWeightTransform(Expr weight, int tile_size, std::string op_name) {
auto attrs = make_object<ConvWinogradWeightTransformAttrs>();
attrs->tile_size = tile_size;
Expand All @@ -112,50 +51,6 @@ Expr MakeConvGemmWeightTransform(Expr weight, int tile_rows, int tile_cols, std:
return Call(op, {weight}, Attrs(attrs), {});
}

template <typename T>
Expr MakeConvTranspose(Expr data, Expr weight, Array<IndexExpr> strides, Array<IndexExpr> padding,
Array<IndexExpr> dilation, int groups, IndexExpr channels,
Array<IndexExpr> kernel_size, std::string data_layout,
std::string kernel_layout, std::string out_layout,
Array<IndexExpr> output_padding, DataType out_dtype, std::string op_name) {
auto attrs = make_object<T>();
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->output_padding = std::move(output_padding);
attrs->out_dtype = std::move(out_dtype);
const Op& op = Op::Get(op_name);
return Call(op, {data, weight}, Attrs(attrs), {});
}

template <typename T>
Expr MakeDeformableConv(Expr data, Expr offset, Expr weight, Array<IndexExpr> strides,
Array<IndexExpr> padding, Array<IndexExpr> dilation, int deformable_groups,
int groups, int channels, Array<IndexExpr> kernel_size,
std::string data_layout, std::string kernel_layout, std::string out_layout,
DataType out_dtype, std::string op_name) {
auto attrs = make_object<T>();
attrs->strides = strides;
attrs->padding = padding;
attrs->dilation = dilation;
attrs->deformable_groups = deformable_groups;
attrs->groups = groups;
attrs->channels = channels;
attrs->kernel_size = kernel_size;
attrs->data_layout = data_layout;
attrs->kernel_layout = kernel_layout;
attrs->out_layout = out_layout;
attrs->out_dtype = out_dtype;
const Op& op = Op::Get(op_name);
return Call(op, {data, offset, weight}, Attrs{attrs}, {});
}

// relay.nn.conv1d
TVM_REGISTER_NODE_TYPE(Conv1DAttrs);

Expand Down
149 changes: 149 additions & 0 deletions src/relay/op/nn/convolution_make.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file src/relay/op/nn/make_convolution.h
* \brief utilities for creating convolution ops
*/
#ifndef TVM_RELAY_OP_NN_CONVOLUTION_MAKE_H_
#define TVM_RELAY_OP_NN_CONVOLUTION_MAKE_H_

#include <tvm/relay/attrs/nn.h>
#include <tvm/relay/op.h>

#include <string>
#include <utility>
#include <vector>

namespace tvm {
namespace relay {

template <typename T>
inline Expr MakeConv(Expr data, Expr weight, Array<IndexExpr> strides, Array<IndexExpr> padding,
Array<IndexExpr> dilation, int groups, IndexExpr channels,
Array<IndexExpr> kernel_size, std::string data_layout,
std::string kernel_layout, std::string out_layout, DataType out_dtype,
std::string op_name) {
auto attrs = make_object<T>();
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->out_dtype = std::move(out_dtype);
const Op& op = Op::Get(op_name);
return Call(op, {data, weight}, Attrs(attrs), {});
}

template <typename T>
inline Expr MakeConvWinograd(Expr data, Expr weight, int tile_size, Array<IndexExpr> strides,
Array<IndexExpr> padding, Array<IndexExpr> dilation, int groups,
IndexExpr channels, Array<IndexExpr> kernel_size,
std::string data_layout, std::string kernel_layout,
std::string out_layout, DataType out_dtype, std::string op_name) {
auto attrs = make_object<T>();
attrs->tile_size = tile_size;
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->out_dtype = std::move(out_dtype);
const Op& op = Op::Get(op_name);
return Call(op, {data, weight}, Attrs(attrs), {});
}

template <typename T>
inline Expr MakeConvGemm(Expr data, Expr weight, Array<IndexExpr> strides, Array<IndexExpr> padding,
Array<IndexExpr> dilation, int groups, IndexExpr channels,
Array<IndexExpr> kernel_size, std::string data_layout,
std::string kernel_layout, std::string out_layout, DataType out_dtype,
std::string op_name) {
auto attrs = make_object<T>();
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->out_dtype = std::move(out_dtype);
const Op& op = Op::Get(op_name);
return Call(op, {data, weight}, Attrs(attrs), {});
}

template <typename T>
inline Expr MakeConvTranspose(Expr data, Expr weight, Array<IndexExpr> strides,
Array<IndexExpr> padding, Array<IndexExpr> dilation, int groups,
IndexExpr channels, Array<IndexExpr> kernel_size,
std::string data_layout, std::string kernel_layout,
std::string out_layout, Array<IndexExpr> output_padding,
DataType out_dtype, std::string op_name) {
auto attrs = make_object<T>();
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->output_padding = std::move(output_padding);
attrs->out_dtype = std::move(out_dtype);
const Op& op = Op::Get(op_name);
return Call(op, {data, weight}, Attrs(attrs), {});
}

template <typename T>
inline Expr MakeDeformableConv(Expr data, Expr offset, Expr weight, Array<IndexExpr> strides,
Array<IndexExpr> padding, Array<IndexExpr> dilation,
int deformable_groups, int groups, int channels,
Array<IndexExpr> kernel_size, std::string data_layout,
std::string kernel_layout, std::string out_layout,
DataType out_dtype, std::string op_name) {
auto attrs = make_object<T>();
attrs->strides = strides;
attrs->padding = padding;
attrs->dilation = dilation;
attrs->deformable_groups = deformable_groups;
attrs->groups = groups;
attrs->channels = channels;
attrs->kernel_size = kernel_size;
attrs->data_layout = data_layout;
attrs->kernel_layout = kernel_layout;
attrs->out_layout = out_layout;
attrs->out_dtype = out_dtype;
const Op& op = Op::Get(op_name);
return Call(op, {data, offset, weight}, Attrs{attrs}, {});
}

} // namespace relay
} // namespace tvm
#endif // TVM_RELAY_OP_NN_CONVOLUTION_MAKE_H_
1 change: 1 addition & 0 deletions src/relay/op/nn/nn.cc
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
#include <vector>

#include "../../transforms/infer_layout_util.h"
#include "../make_op.h"
#include "../op_common.h"
#include "../type_relations.h"

Expand Down
1 change: 1 addition & 0 deletions src/relay/op/nn/pad.cc
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@

#include <vector>

#include "../make_op.h"
#include "../op_common.h"

namespace tvm {
Expand Down
Loading

0 comments on commit 0950905

Please sign in to comment.