This repository contains the source code of Multinet.
Download pre-processed NYUv2
dataset here which we evaluated in the paper.
Dataroot should be like this:
data
├───train
│ ├───depth
│ ├───image
│ ├───label
│ |───normal
|───val
├───depth
├───image
├───label
|───normal
To run any multinet:
python3 train_multinet.py --dataroot /data --apply_augmentation --ckpt_dir /ckpt --epochs 200 --batch_size 4 --backbone resnet101 --architecture fcn
To run SingleNet:
python3 train_singlenet.py --dataroot /data --apply_augmentation --ckpt_dir /ckpt_dir --epochs 200 --batch_size 4 --backbone resnet101 --task semantic
@inproceedings{liu2019end,
title={End-to-End Multi-task Learning with Attention},
author={Liu, Shikun and Johns, Edward and Davison, Andrew J},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={1871--1880},
year={2019}
}
We would like to thank Prof. Jacob Whitehill for his help on this project.
If you have any questions, please contact [email protected]
.