It is an ML algorithm using Expectation Maximization using Gaussian Mixture Models.
- Given a Dataset, and selected attribute, algorithm clusters and gives the mean for each clusters.
- It uses Gaussian Distribution for finding the probability.
- It uses Expectation Maximization along with log likelihood to find a mean.
- Indian Liver Test : https://www.kaggle.com/uciml/indian-liver-patient-records
- Wine Quality : https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009
Created using Draw.io
1. Clone the Repository or Download the Project
2. Navigate to folder ExpMaxML
3. Execute 'python ExpMaxML.py'
Albumin - Very well Tested
Alamine_Aminotransferase
Total_Bilirubin
fixed Acidity - Very well Tested
Free Sulphur dioxide
Residual Sugar
Expectation Maximization using Gaussian Mixture Model
1.Liver
2.Wine
3.Custom(File Path Needed)
Select one Dataset from above : 1
Available Columns
0 Age
1 Total_Bilirubin
2 Direct_Bilirubin
3 Alkaline_Phosphotase
4 Alamine_Aminotransferase
5 Aspartate_Aminotransferase
6 Total_Protiens
7 Albumin
8 Albumin_and_Globulin_Ratio
9 Dataset
Select one Column(Enter number): 7
Close the Graph to continue.
Checking feasibility of Cluster:2
Checking feasibility of Cluster:3
Optimal Cluster is 3
******* Iteration 0 *********
Printing Mean
2.355348573822168, 3.1193685474989397, 3.9317409062682755
Log Likelyhood :-151537.16537436945
******* Iteration 1 *********
Printing Mean
2.356583558295428, 3.117896594822594, 3.928358017839534
Log Likelyhood :-151426.94519112387
0.0
******* Iteration 2 *********
Printing Mean
2.356504406993411, 3.117180941618275, 3.9271702188672144
Log Likelyhood :-151399.42224758756
0.7502912558674304
..
...
.....
Final Mean Values for each cluster:
Cluster 0 : 2.356364851826904
Cluster 1 : 3.116288502073406
Cluster 2 : 3.925730588575203
- ExpMaxML.py - Main Startup File.
- /StatFunctions
- EM - Methods related to Expectation Maximization
- PDF - Distribution Implemenataion
- StatObj - Custom Stat Class
- Liver Analysis - Very Basic Liver Analysis
- indian_liver_patient.csv
- winequality-red.csv