-
Notifications
You must be signed in to change notification settings - Fork 9.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of github.com:n8n-io/n8n into toggl-api-update
- Loading branch information
Showing
363 changed files
with
3,090 additions
and
1,561 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
257 changes: 257 additions & 0 deletions
257
packages/@n8n/nodes-langchain/nodes/chains/SentimentAnalysis/SentimentAnalysis.node.ts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,257 @@ | ||
import type { | ||
IDataObject, | ||
IExecuteFunctions, | ||
INodeExecutionData, | ||
INodeParameters, | ||
INodeType, | ||
INodeTypeDescription, | ||
} from 'n8n-workflow'; | ||
|
||
import { NodeConnectionType, NodeOperationError } from 'n8n-workflow'; | ||
|
||
import type { BaseLanguageModel } from '@langchain/core/language_models/base'; | ||
import { HumanMessage } from '@langchain/core/messages'; | ||
import { SystemMessagePromptTemplate, ChatPromptTemplate } from '@langchain/core/prompts'; | ||
import { OutputFixingParser, StructuredOutputParser } from 'langchain/output_parsers'; | ||
import { z } from 'zod'; | ||
import { getTracingConfig } from '../../../utils/tracing'; | ||
|
||
const DEFAULT_SYSTEM_PROMPT_TEMPLATE = | ||
'You are highly intelligent and accurate sentiment analyzer. Analyze the sentiment of the provided text. Categorize it into one of the following: {categories}. Use the provided formatting instructions. Only output the JSON.'; | ||
|
||
const DEFAULT_CATEGORIES = 'Positive, Neutral, Negative'; | ||
const configuredOutputs = (parameters: INodeParameters, defaultCategories: string) => { | ||
const options = (parameters?.options ?? {}) as IDataObject; | ||
const categories = (options?.categories as string) ?? defaultCategories; | ||
const categoriesArray = categories.split(',').map((cat) => cat.trim()); | ||
|
||
const ret = categoriesArray.map((cat) => ({ type: NodeConnectionType.Main, displayName: cat })); | ||
return ret; | ||
}; | ||
|
||
export class SentimentAnalysis implements INodeType { | ||
description: INodeTypeDescription = { | ||
displayName: 'Sentiment Analysis', | ||
name: 'sentimentAnalysis', | ||
icon: 'fa:balance-scale-left', | ||
iconColor: 'black', | ||
group: ['transform'], | ||
version: 1, | ||
description: 'Analyze the sentiment of your text', | ||
codex: { | ||
categories: ['AI'], | ||
subcategories: { | ||
AI: ['Chains', 'Root Nodes'], | ||
}, | ||
resources: { | ||
primaryDocumentation: [ | ||
{ | ||
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.sentimentanalysis/', | ||
}, | ||
], | ||
}, | ||
}, | ||
defaults: { | ||
name: 'Sentiment Analysis', | ||
}, | ||
inputs: [ | ||
{ displayName: '', type: NodeConnectionType.Main }, | ||
{ | ||
displayName: 'Model', | ||
maxConnections: 1, | ||
type: NodeConnectionType.AiLanguageModel, | ||
required: true, | ||
}, | ||
], | ||
outputs: `={{(${configuredOutputs})($parameter, "${DEFAULT_CATEGORIES}")}}`, | ||
properties: [ | ||
{ | ||
displayName: 'Text to Analyze', | ||
name: 'inputText', | ||
type: 'string', | ||
required: true, | ||
default: '', | ||
description: 'Use an expression to reference data in previous nodes or enter static text', | ||
typeOptions: { | ||
rows: 2, | ||
}, | ||
}, | ||
{ | ||
displayName: | ||
'Sentiment scores are LLM-generated estimates, not statistically rigorous measurements. They may be inconsistent across runs and should be used as rough indicators only.', | ||
name: 'detailedResultsNotice', | ||
type: 'notice', | ||
default: '', | ||
displayOptions: { | ||
show: { | ||
'/options.includeDetailedResults': [true], | ||
}, | ||
}, | ||
}, | ||
{ | ||
displayName: 'Options', | ||
name: 'options', | ||
type: 'collection', | ||
default: {}, | ||
placeholder: 'Add Option', | ||
options: [ | ||
{ | ||
displayName: 'Sentiment Categories', | ||
name: 'categories', | ||
type: 'string', | ||
default: DEFAULT_CATEGORIES, | ||
description: 'A comma-separated list of categories to analyze', | ||
noDataExpression: true, | ||
typeOptions: { | ||
rows: 2, | ||
}, | ||
}, | ||
{ | ||
displayName: 'System Prompt Template', | ||
name: 'systemPromptTemplate', | ||
type: 'string', | ||
default: DEFAULT_SYSTEM_PROMPT_TEMPLATE, | ||
description: 'String to use directly as the system prompt template', | ||
typeOptions: { | ||
rows: 6, | ||
}, | ||
}, | ||
{ | ||
displayName: 'Include Detailed Results', | ||
name: 'includeDetailedResults', | ||
type: 'boolean', | ||
default: false, | ||
description: | ||
'Whether to include sentiment strength and confidence scores in the output', | ||
}, | ||
{ | ||
displayName: 'Enable Auto-Fixing', | ||
name: 'enableAutoFixing', | ||
type: 'boolean', | ||
default: true, | ||
description: 'Whether to enable auto-fixing for the output parser', | ||
}, | ||
], | ||
}, | ||
], | ||
}; | ||
|
||
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> { | ||
const items = this.getInputData(); | ||
|
||
const llm = (await this.getInputConnectionData( | ||
NodeConnectionType.AiLanguageModel, | ||
0, | ||
)) as BaseLanguageModel; | ||
|
||
const returnData: INodeExecutionData[][] = []; | ||
|
||
for (let i = 0; i < items.length; i++) { | ||
try { | ||
const sentimentCategories = this.getNodeParameter( | ||
'options.categories', | ||
i, | ||
DEFAULT_CATEGORIES, | ||
) as string; | ||
|
||
const categories = sentimentCategories | ||
.split(',') | ||
.map((cat) => cat.trim()) | ||
.filter(Boolean); | ||
|
||
if (categories.length === 0) { | ||
throw new NodeOperationError(this.getNode(), 'No sentiment categories provided', { | ||
itemIndex: i, | ||
}); | ||
} | ||
|
||
// Initialize returnData with empty arrays for each category | ||
if (returnData.length === 0) { | ||
returnData.push(...Array.from({ length: categories.length }, () => [])); | ||
} | ||
|
||
const options = this.getNodeParameter('options', i, {}) as { | ||
systemPromptTemplate?: string; | ||
includeDetailedResults?: boolean; | ||
enableAutoFixing?: boolean; | ||
}; | ||
|
||
const schema = z.object({ | ||
sentiment: z.enum(categories as [string, ...string[]]), | ||
strength: z | ||
.number() | ||
.min(0) | ||
.max(1) | ||
.describe('Strength score for sentiment in relation to the category'), | ||
confidence: z.number().min(0).max(1), | ||
}); | ||
|
||
const structuredParser = StructuredOutputParser.fromZodSchema(schema); | ||
|
||
const parser = options.enableAutoFixing | ||
? OutputFixingParser.fromLLM(llm, structuredParser) | ||
: structuredParser; | ||
|
||
const systemPromptTemplate = SystemMessagePromptTemplate.fromTemplate( | ||
`${options.systemPromptTemplate ?? DEFAULT_SYSTEM_PROMPT_TEMPLATE} | ||
{format_instructions}`, | ||
); | ||
|
||
const input = this.getNodeParameter('inputText', i) as string; | ||
const inputPrompt = new HumanMessage(input); | ||
const messages = [ | ||
await systemPromptTemplate.format({ | ||
categories: sentimentCategories, | ||
format_instructions: parser.getFormatInstructions(), | ||
}), | ||
inputPrompt, | ||
]; | ||
|
||
const prompt = ChatPromptTemplate.fromMessages(messages); | ||
const chain = prompt.pipe(llm).pipe(parser).withConfig(getTracingConfig(this)); | ||
|
||
try { | ||
const output = await chain.invoke(messages); | ||
const sentimentIndex = categories.findIndex( | ||
(s) => s.toLowerCase() === output.sentiment.toLowerCase(), | ||
); | ||
|
||
if (sentimentIndex !== -1) { | ||
const resultItem = { ...items[i] }; | ||
const sentimentAnalysis: IDataObject = { | ||
category: output.sentiment, | ||
}; | ||
if (options.includeDetailedResults) { | ||
sentimentAnalysis.strength = output.strength; | ||
sentimentAnalysis.confidence = output.confidence; | ||
} | ||
resultItem.json = { | ||
...resultItem.json, | ||
sentimentAnalysis, | ||
}; | ||
returnData[sentimentIndex].push(resultItem); | ||
} | ||
} catch (error) { | ||
throw new NodeOperationError( | ||
this.getNode(), | ||
'Error during parsing of LLM output, please check your LLM model and configuration', | ||
{ | ||
itemIndex: i, | ||
}, | ||
); | ||
} | ||
} catch (error) { | ||
if (this.continueOnFail(error)) { | ||
const executionErrorData = this.helpers.constructExecutionMetaData( | ||
this.helpers.returnJsonArray({ error: error.message }), | ||
{ itemData: { item: i } }, | ||
); | ||
returnData[0].push(...executionErrorData); | ||
continue; | ||
} | ||
throw error; | ||
} | ||
} | ||
return returnData; | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.