Skip to content

Commit

Permalink
Update data augmentation tutorial (pytorch#3375)
Browse files Browse the repository at this point in the history
Summary:
Replace sox_effects with `torchaudio.io.AudioEffector`

1. To show case the new and better feature
2. To prepare for the upcoming removal of file-like support object

Pull Request resolved: pytorch#3375

Reviewed By: nateanl

Differential Revision: D46379016

Pulled By: mthrok

fbshipit-source-id: 70f24b62494204949f327f6ac6c49f315c9ee315
  • Loading branch information
mthrok authored and facebook-github-bot committed Jun 2, 2023
1 parent ab7a39f commit 2ba36b4
Showing 1 changed file with 98 additions and 133 deletions.
231 changes: 98 additions & 133 deletions examples/tutorials/audio_data_augmentation_tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,6 @@
# First, we import the modules and download the audio assets we use in this tutorial.
#

import math

from IPython.display import Audio
import matplotlib.pyplot as plt

Expand All @@ -44,63 +42,46 @@
# Applying effects and filtering
# ------------------------------
#
# :py:func:`torchaudio.sox_effects` allows for directly applying filters similar to
# those available in ``sox`` to Tensor objects and file object audio sources.
#
# There are two functions for this:
#
# - :py:func:`torchaudio.sox_effects.apply_effects_tensor` for applying effects
# to Tensor.
# - :py:func:`torchaudio.sox_effects.apply_effects_file` for applying effects to
# other audio sources.
#
# Both functions accept effect definitions in the form
# ``List[List[str]]``.
# This is mostly consistent with how ``sox`` command works, but one caveat is
# that ``sox`` adds some effects automatically, whereas ``torchaudio``’s
# implementation does not.
#
# For the list of available effects, please refer to `the sox
# documentation <http://sox.sourceforge.net/sox.html>`__.
# :py:class:`torchaudio.io.AudioEffector` allows for directly applying
# filters and codecs to Tensor objects, in a similar way as ``ffmpeg``
# command
#
# **Tip** If you need to load and resample your audio data on the fly,
# then you can use :py:func:`torchaudio.sox_effects.apply_effects_file`
# with effect ``"rate"``.
#
# **Note** :py:func:`torchaudio.sox_effects.apply_effects_file` accepts a
# file-like object or path-like object.
# Similar to :py:func:`torchaudio.load`, when the audio format cannot be
# inferred from either the file extension or header, you can provide
# argument ``format`` to specify the format of the audio source.
#
# **Note** This process is not differentiable.
# `AudioEffector Usages <./effector_tutorial.html>` explains how to use
# this class, so for the detail, please refer to the tutorial.
#

# Load the data
waveform1, sample_rate1 = torchaudio.load(SAMPLE_WAV)
waveform1, sample_rate = torchaudio.load(SAMPLE_WAV, channels_first=False)

# Define effects
effects = [
["lowpass", "-1", "300"], # apply single-pole lowpass filter
["speed", "0.8"], # reduce the speed
# This only changes sample rate, so it is necessary to
# add `rate` effect with original sample rate after this.
["rate", f"{sample_rate1}"],
["reverb", "-w"], # Reverbration gives some dramatic feeling
]
effect = ",".join(
[
"lowpass=frequency=300:poles=1", # apply single-pole lowpass filter
"atempo=0.8", # reduce the speed
"aecho=in_gain=0.8:out_gain=0.9:delays=200:decays=0.3|delays=400:decays=0.3"
# Applying echo gives some dramatic feeling
],
)


# Apply effects
waveform2, sample_rate2 = torchaudio.sox_effects.apply_effects_tensor(waveform1, sample_rate1, effects)
def apply_effect(waveform, sample_rate, effect):
effector = torchaudio.io.AudioEffector(effect=effect)
return effector.apply(waveform, sample_rate)

print(waveform1.shape, sample_rate1)
print(waveform2.shape, sample_rate2)

waveform2 = apply_effect(waveform1, sample_rate, effect)

print(waveform1.shape, sample_rate)
print(waveform2.shape, sample_rate)

######################################################################
# Note that the number of frames and number of channels are different from
# those of the original after the effects are applied. Let’s listen to the
# audio.
#


def plot_waveform(waveform, sample_rate, title="Waveform", xlim=None):
waveform = waveform.numpy()

Expand All @@ -123,6 +104,7 @@ def plot_waveform(waveform, sample_rate, title="Waveform", xlim=None):
######################################################################
#


def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
waveform = waveform.numpy()

Expand All @@ -141,26 +123,23 @@ def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
plt.show(block=False)

######################################################################
# Original:
# ~~~~~~~~~
# Original
# ~~~~~~~~
#

plot_waveform(waveform1, sample_rate1, title="Original", xlim=(-0.1, 3.2))
plot_specgram(waveform1, sample_rate1, title="Original", xlim=(0, 3.04))
Audio(waveform1, rate=sample_rate1)
plot_waveform(waveform1.T, sample_rate, title="Original", xlim=(-0.1, 3.2))
plot_specgram(waveform1.T, sample_rate, title="Original", xlim=(0, 3.04))
Audio(waveform1.T, rate=sample_rate)

######################################################################
# Effects applied:
# ~~~~~~~~~~~~~~~~
# Effects applied
# ~~~~~~~~~~~~~~~
#

plot_waveform(waveform2, sample_rate2, title="Effects Applied", xlim=(-0.1, 3.2))
plot_specgram(waveform2, sample_rate2, title="Effects Applied", xlim=(0, 3.04))
Audio(waveform2, rate=sample_rate2)
plot_waveform(waveform2.T, sample_rate, title="Effects Applied", xlim=(-0.1, 3.2))
plot_specgram(waveform2.T, sample_rate, title="Effects Applied", xlim=(0, 3.04))
Audio(waveform2.T, rate=sample_rate)

######################################################################
# Doesn’t it sound more dramatic?
#

######################################################################
# Simulating room reverberation
Expand Down Expand Up @@ -203,17 +182,17 @@ def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
augmented = F.fftconvolve(speech, rir)

######################################################################
# Original:
# ~~~~~~~~~
# Original
# ~~~~~~~~
#

plot_waveform(speech, sample_rate, title="Original")
plot_specgram(speech, sample_rate, title="Original")
Audio(speech, rate=sample_rate)

######################################################################
# RIR applied:
# ~~~~~~~~~~~~
# RIR applied
# ~~~~~~~~~~~
#

plot_waveform(augmented, sample_rate, title="RIR Applied")
Expand Down Expand Up @@ -248,17 +227,17 @@ def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):


######################################################################
# Background noise:
# ~~~~~~~~~~~~~~~~~
# Background noise
# ~~~~~~~~~~~~~~~~
#

plot_waveform(noise, sample_rate, title="Background noise")
plot_specgram(noise, sample_rate, title="Background noise")
Audio(noise, rate=sample_rate)

######################################################################
# SNR 20 dB:
# ~~~~~~~~~~
# SNR 20 dB
# ~~~~~~~~~
#

snr_db, noisy_speech = snr_dbs[0], noisy_speeches[0:1]
Expand All @@ -267,8 +246,8 @@ def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
Audio(noisy_speech, rate=sample_rate)

######################################################################
# SNR 10 dB:
# ~~~~~~~~~~
# SNR 10 dB
# ~~~~~~~~~
#

snr_db, noisy_speech = snr_dbs[1], noisy_speeches[1:2]
Expand All @@ -277,8 +256,8 @@ def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
Audio(noisy_speech, rate=sample_rate)

######################################################################
# SNR 3 dB:
# ~~~~~~~~~
# SNR 3 dB
# ~~~~~~~~
#

snr_db, noisy_speech = snr_dbs[2], noisy_speeches[2:3]
Expand All @@ -291,60 +270,56 @@ def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
# Applying codec to Tensor object
# -------------------------------
#
# :py:func:`torchaudio.functional.apply_codec` can apply codecs to
# :py:class:`torchaudio.io.AudioEffector` can also apply codecs to
# a Tensor object.
#
# **Note** This process is not differentiable.
#

waveform, sample_rate = torchaudio.load(SAMPLE_SPEECH, channels_first=False)


waveform, sample_rate = torchaudio.load(SAMPLE_SPEECH)
def apply_codec(waveform, sample_rate, format, encoder=None):
encoder = torchaudio.io.AudioEffector(format=format, encoder=encoder)
return encoder.apply(waveform, sample_rate)

configs = [
{"format": "wav", "encoding": "ULAW", "bits_per_sample": 8},
{"format": "gsm"},
{"format": "vorbis", "compression": -1},
]
waveforms = []
for param in configs:
augmented = F.apply_codec(waveform, sample_rate, **param)
waveforms.append(augmented)

######################################################################
# Original:
# ~~~~~~~~~
# Original
# ~~~~~~~~
#

plot_waveform(waveform, sample_rate, title="Original")
plot_specgram(waveform, sample_rate, title="Original")
Audio(waveform, rate=sample_rate)
plot_waveform(waveform.T, sample_rate, title="Original")
plot_specgram(waveform.T, sample_rate, title="Original")
Audio(waveform.T, rate=sample_rate)

######################################################################
# 8 bit mu-law:
# ~~~~~~~~~~~~~
# 8 bit mu-law
# ~~~~~~~~~~~~
#

plot_waveform(waveforms[0], sample_rate, title="8 bit mu-law")
plot_specgram(waveforms[0], sample_rate, title="8 bit mu-law")
Audio(waveforms[0], rate=sample_rate)
mulaw = apply_codec(waveform, sample_rate, "wav", encoder="pcm_mulaw")
plot_waveform(mulaw.T, sample_rate, title="8 bit mu-law")
plot_specgram(mulaw.T, sample_rate, title="8 bit mu-law")
Audio(mulaw.T, rate=sample_rate)

######################################################################
# GSM-FR:
# ~~~~~~~
# G.722
# ~~~~~
#

plot_waveform(waveforms[1], sample_rate, title="GSM-FR")
plot_specgram(waveforms[1], sample_rate, title="GSM-FR")
Audio(waveforms[1], rate=sample_rate)
g722 = apply_codec(waveform, sample_rate, "g722")
plot_waveform(g722.T, sample_rate, title="G.722")
plot_specgram(g722.T, sample_rate, title="G.722")
Audio(g722.T, rate=sample_rate)

######################################################################
# Vorbis:
# ~~~~~~~
# Vorbis
# ~~~~~~
#

plot_waveform(waveforms[2], sample_rate, title="Vorbis")
plot_specgram(waveforms[2], sample_rate, title="Vorbis")
Audio(waveforms[2], rate=sample_rate)
vorbis = apply_codec(waveform, sample_rate, "ogg", encoder="vorbis")
plot_waveform(vorbis.T, sample_rate, title="Vorbis")
plot_specgram(vorbis.T, sample_rate, title="Vorbis")
Audio(vorbis.T, rate=sample_rate)

######################################################################
# Simulating a phone recoding
Expand Down Expand Up @@ -378,62 +353,52 @@ def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
plot_specgram(bg_added, sample_rate, title="BG noise added")

# Apply filtering and change sample rate
filtered, sample_rate2 = torchaudio.sox_effects.apply_effects_tensor(
bg_added,
sample_rate,
effects=[
["lowpass", "4000"],
[
"compand",
"0.02,0.05",
"-60,-60,-30,-10,-20,-8,-5,-8,-2,-8",
"-8",
"-7",
"0.05",
],
["rate", "8000"],
],
)
effect = ",".join([
"lowpass=frequency=4000:poles=1",
"compand=attacks=0.02:decays=0.05:points=-60/-60|-30/-10|-20/-8|-5/-8|-2/-8:gain=-8:volume=-7:delay=0.05",
])

plot_specgram(filtered, sample_rate2, title="Filtered")
filtered = apply_effect(bg_added.T, sample_rate, effect)
sample_rate2 = 8000

# Apply telephony codec
codec_applied = F.apply_codec(filtered, sample_rate2, format="gsm")
plot_specgram(filtered.T, sample_rate2, title="Filtered")

plot_specgram(codec_applied, sample_rate2, title="GSM Codec Applied")
# Apply telephony codec
codec_applied = apply_codec(filtered, sample_rate2, "g722")
plot_specgram(codec_applied.T, sample_rate2, title="G.722 Codec Applied")


######################################################################
# Original speech:
# ~~~~~~~~~~~~~~~~
# Original speech
# ~~~~~~~~~~~~~~~
#

Audio(original_speech, rate=sample_rate)

######################################################################
# RIR applied:
# ~~~~~~~~~~~~
# RIR applied
# ~~~~~~~~~~~
#

Audio(rir_applied, rate=sample_rate)

######################################################################
# Background noise added:
# ~~~~~~~~~~~~~~~~~~~~~~~
# Background noise added
# ~~~~~~~~~~~~~~~~~~~~~~
#

Audio(bg_added, rate=sample_rate)

######################################################################
# Filtered:
# ~~~~~~~~~
# Filtered
# ~~~~~~~~
#

Audio(filtered, rate=sample_rate2)
Audio(filtered.T, rate=sample_rate2)

######################################################################
# Codec applied:
# ~~~~~~~~~~~~~~
# Codec applied
# ~~~~~~~~~~~~~
#

Audio(codec_applied, rate=sample_rate2)
Audio(codec_applied.T, rate=sample_rate2)

0 comments on commit 2ba36b4

Please sign in to comment.