A plug-and-play library for neural networks written in Scala 3!
libraryDependencies += "com.github.mrdimosthenis" %% "synapses" % "8.0.0"
import synapses.lib.Net
val randNet = Net(List(2, 3, 1))
- Input layer: the first layer of the network has 2 nodes.
- Hidden layer: the second layer has 3 neurons.
- Output layer: the third layer has 1 neuron.
randNet.json()
// res0: String = """[
// [{"activationF" : "sigmoid", "weights" : [-0.5,0.1,0.8]},
// {"activationF" : "sigmoid", "weights" : [0.7,0.6,-0.1]},
// {"activationF" : "sigmoid", "weights" : [-0.8,-0.1,-0.7]}],
// [{"activationF" : "sigmoid", "weights" : [0.5,-0.3,-0.4,-0.5]}]
// ]"""
val net = Net("""[
[{"activationF" : "sigmoid", "weights" : [-0.5,0.1,0.8]},
{"activationF" : "sigmoid", "weights" : [0.7,0.6,-0.1]},
{"activationF" : "sigmoid", "weights" : [-0.8,-0.1,-0.7]}],
[{"activationF" : "sigmoid", "weights" : [0.5,-0.3,-0.4,-0.5]}]
]""")
net.predict(List(0.2, 0.6))
// res1: List[Double] = List(0.49131100324012494)
net.fit(
learningRate = 0.1,
inputValues = List(0.2, 0.6),
expectedOutput = List(0.9)
)
The fit
method returns the neural network with its weights adjusted to a single observation.
In practice, for a neural network to be fully trained, it should be fitted with multiple observations, usually by folding over an iterator.
Iterator(
(List(0.2, 0.6), List(0.9)),
(List(0.1, 0.8), List(0.2)),
(List(0.5, 0.4), List(0.6))
).foldLeft(net){ case (acc, (xs, ys)) =>
acc.fit(learningRate = 0.1, xs, ys)
}
Every function is efficient because its implementation is based on lazy list and all information is obtained at a single pass.
For a neural network that has huge layers, the performance can be further improved
by using the parallel counterparts of predict
and fit
(parPredict
and parFit
).
Net(layerSizes = List(2, 3, 1), seed = 1000)
We can provide a seed
to create a non-random neural network.
This way, we can use it for testing.
import scala.util.Random
import synapses.lib.Fun
def activationF(layerIndex: Int): Fun =
layerIndex match
case 0 => Fun.sigmoid
case 1 => Fun.identity
case 2 => Fun.leakyReLU
case 3 => Fun.tanh
def weightInitF(layerIndex: Int): Double =
(layerIndex + 1) * (1.0 - 2.0 * Random().nextDouble())
val customNet = Net(layerSizes = List(4, 6, 8, 5, 3), activationF, weightInitF)
- The
activationF
function accepts the index of a layer and returns an activation function for its neurons. - The
weightInitF
function accepts the index of a layer and returns a weight for the synapses of its neurons.
If we don't provide these functions, the activation function of all neurons is sigmoid, and the weight distribution of the synapses is normal between -1.0 and 1.0.
customNet.svg()
With its svg drawing, we can see what a neural network looks like. The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.
import synapses.lib.Stats
def expAndPredVals() =
Iterator(
(List(0.0, 0.0, 1.0), List(0.0, 0.1, 0.9)),
(List(0.0, 1.0, 0.0), List(0.8, 0.2, 0.0)),
(List(1.0, 0.0, 0.0), List(0.7, 0.1, 0.2)),
(List(1.0, 0.0, 0.0), List(0.3, 0.3, 0.4)),
(List(0.0, 0.0, 1.0), List(0.2, 0.2, 0.6))
)
- Root-mean-square error
Stats.rmse(expAndPredVals())
// res6: Double = 0.6957010852370435
- Classification accuracy score
Stats.score(expAndPredVals())
// res7: Double = 0.6
import synapses.lib.Codec
- One hot encoding is a process that turns discrete attributes into a list of 0.0 and 1.0.
- Minmax normalization scales continuous attributes into values between 0.0 and 1.0.
val setosa = Map(
"petal_length" -> "1.5",
"petal_width" -> "0.1",
"sepal_length" -> "4.9",
"sepal_width" -> "3.1",
"species" -> "setosa"
)
val versicolor = Map(
"petal_length" -> "3.8",
"petal_width" -> "1.1",
"sepal_length" -> "5.5",
"sepal_width" -> "2.4",
"species" -> "versicolor"
)
val virginica = Map(
"petal_length" -> "6.0",
"petal_width" -> "2.2",
"sepal_length" -> "5.0",
"sepal_width" -> "1.5",
"species" -> "virginica"
)
def dataset() = Iterator(setosa,versicolor,virginica)
You can use a Codec
to encode and decode a data point.
val codec = Codec(
List(("petal_length", false),
("petal_width", false),
("sepal_length", false),
("sepal_width", false),
("species", true)),
dataset()
)
- The first parameter is a list of pairs that define the name and the type (discrete or not) of each attribute.
- The second parameter is an iterator that contains the data points.
val codecJson = codec.json()
// codecJson: String = """[
// {"Case" : "SerializableContinuous",
// "Fields" : [{"key" : "petal_length","min" : 1.5,"max" : 6.0}]},
// {"Case" : "SerializableContinuous",
// "Fields" : [{"key" : "petal_width","min" : 0.1,"max" : 2.2}]},
// {"Case" : "SerializableContinuous",
// "Fields" : [{"key" : "sepal_length","min" : 4.9,"max" : 5.5}]},
// {"Case" : "SerializableContinuous",
// "Fields" : [{"key" : "sepal_width","min" : 1.5,"max" : 3.1}]},
// {"Case" : "SerializableDiscrete",
// "Fields" : [{"key" : "species","values" : ["virginica","versicolor","setosa"]}]}
// ]"""
Codec(codecJson)
val encodedSetosa = codec.encode(setosa)
// encodedSetosa: List[Double] = List(0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0)
codec.decode(encodedSetosa)
// res9: Map[String, String] = HashMap(
// "species" -> "setosa",
// "sepal_width" -> "3.1",
// "petal_width" -> "0.1",
// "petal_length" -> "1.5",
// "sepal_length" -> "4.9"
// )