Skip to content

Commit

Permalink
minor: fix merge conflict
Browse files Browse the repository at this point in the history
  • Loading branch information
mrava87 committed Nov 24, 2024
2 parents e99a54a + 317a804 commit a033970
Show file tree
Hide file tree
Showing 19 changed files with 461 additions and 42 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ build
dist
pylops.egg-info/
.eggs/
__pycache__

# setuptools_scm generated #
pylops/version.py
Expand Down
18 changes: 10 additions & 8 deletions docs/source/conf.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
# -*- coding: utf-8 -*-
import sys
import os
import datetime
import os
import sys

from sphinx_gallery.sorting import ExampleTitleSortKey

from pylops import __version__

# Sphinx needs to be able to import the package to use autodoc and get the version number
Expand Down Expand Up @@ -37,6 +39,8 @@
"matplotlib": ("https://matplotlib.org/", None),
"pyfftw": ("https://pyfftw.readthedocs.io/en/latest/", None),
"spgl1": ("https://spgl1.readthedocs.io/en/latest/", None),
"pymc": ("https://www.pymc.io/", None),
"arviz": ("https://python.arviz.org/en/latest/", None),
}

# Generate autodoc stubs with summaries from code
Expand Down Expand Up @@ -103,9 +107,7 @@
# These enable substitutions using |variable| in the rst files
rst_epilog = """
.. |year| replace:: {year}
""".format(
year=year
)
""".format(year=year)
html_static_path = ["_static"]
html_last_updated_fmt = "%b %d, %Y"
html_title = "PyLops"
Expand All @@ -122,15 +124,15 @@
# Theme config
html_theme = "pydata_sphinx_theme"
html_theme_options = {
"logo_only": True,
"display_version": True,
# "logo_only": True,
# "display_version": True,
"logo": {
"image_light": "pylops_b.png",
"image_dark": "pylops.png",
}
}
html_css_files = [
'css/custom.css',
"css/custom.css",
]

html_context = {
Expand Down
1 change: 0 additions & 1 deletion docs/source/gpu.rst
Original file line number Diff line number Diff line change
Expand Up @@ -576,4 +576,3 @@ Geophysical subsurface characterization:
operator currently works only with ``explicit=True`` due to the same issue as
in point 1 for the :class:`pylops.signalprocessing.Convolve1D` operator employed
when ``explicit=False``.

19 changes: 19 additions & 0 deletions docs/source/installation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -437,6 +437,25 @@ You may need to set the environment variable ``NUMBA_NUM_THREADS`` define how ma
It can also be checked dynamically with ``numba.config.NUMBA_DEFAULT_NUM_THREADS``.


PyMC and PyTensor
-----------------
`PyTensor <https://pytensor.readthedocs.io/en/latest/>`_ is used to allow seamless integration between PyLops and
`PyMC <https://www.pymc.io/welcome.html>`_ operators.
Install both of them via ``conda`` with:

.. code-block:: bash
conda install -c conda-forge pytensor pymc
or via ``pip`` with

.. code-block:: bash
>> pip install pytensor pymc
.. note::
PyTensor does not support NumPy 2 yet, so make sure you use NumPy 1.x with PyTensor and PyMC.

PyWavelets
----------
`PyWavelets <https://pywavelets.readthedocs.io/en/latest/>`_ is used to implement the wavelet operators.
Expand Down
235 changes: 235 additions & 0 deletions examples/plot_bayeslinearregr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
r"""
Bayesian Linear Regression
==========================
In the :ref:`sphx_glr_gallery_plot_linearregr.py` example, we
performed linear regression by applying a variety of solvers to the
:py:class:`pylops.LinearRegression` operator.
In this example, we will apply linear regression the Bayesian way.
In Bayesian inference, we are not looking for a "best" estimate
of the linear regression parameters; rather, we are looking for
all possible parameters and their associated (posterior) probability,
that is, how likely that those are the parameters that generated our data.
To do this, we will leverage the probabilistic programming library
`PyMC <https://www.pm.io>`_.
In the Bayesian formulation, we write the problem in the following manner:
.. math::
y_i \sim N(x_0 + x_1 t_i, \sigma) \qquad \forall i=0,1,\ldots,N-1
where :math:`x_0` is the intercept and :math:`x_1` is the gradient.
This notation means that the obtained measurements :math:`y_i` are normally distributed around
mean :math:`x_0 + x_1 t_i` with a standard deviation of :math:`\sigma`.
We can also express this problem in a matrix form, which makes it clear that we
can use a PyLops operator to describe this relationship.
.. math::
\mathbf{y} \sim N(\mathbf{A} \mathbf{x}, \sigma)
In this example, we will combine the Bayesian power of PyMC with the linear language of
PyLops.
"""

import arviz as az
import matplotlib.pyplot as plt
import numpy as np
import pymc as pm

import pylops

plt.close("all")
np.random.seed(10)

###############################################################################
# Define the input parameters: number of samples along the t-axis (``N``),
# linear regression coefficients (``x``), and standard deviation of noise
# to be added to data (``sigma``).
N = 30
x = np.array([1.0, 0.5])
sigma = 0.25

###############################################################################
# Let's create the time axis and initialize the
# :py:class:`pylops.LinearRegression` operator
t = np.linspace(0, 1, N)
LRop = pylops.LinearRegression(t, dtype=t.dtype)

###############################################################################
# We can then apply the operator in forward mode to compute our data points
# along the x-axis (``y``). We will also generate some random gaussian noise
# and create a noisy version of the data (``yn``).
y = LRop @ x
yn = y + np.random.normal(0, sigma, N)

###############################################################################
# The deterministic solution is to solve the
# :math:`\mathbf{y} = \mathbf{A} \mathbf{x}` in a least-squares sense.
# Using PyLops, the ``/`` operator solves the iteratively (i.e.,
# :py:func:`scipy.sparse.linalg.lsqr`).
# In Bayesian terminology, this estimator is known as the maximulum likelihood
# estimation (MLE).
x_mle = LRop / yn
noise_mle = np.sqrt(np.sum((yn - LRop @ x_mle) ** 2) / (N - 1))

###############################################################################
# Alternatively, we may regularize the problem. In this case we will condition
# the solution towards smaller magnitude parameters, we can use a regularized
# least squares approach. Since the weight is pretty small, we expect the
# result to be very similar to the one above.
sigma_prior = 20
eps = 1 / np.sqrt(2) / sigma_prior
x_map, *_ = pylops.optimization.basic.lsqr(LRop, yn, damp=eps)
noise_map = np.sqrt(np.sum((yn - LRop @ x_map) ** 2) / (N - 1))

###############################################################################
# Let's plot the best fitting line for the case of noise free and noisy data
fig, ax = plt.subplots(figsize=(8, 4))
for est, est_label, c in zip(
[x, x_mle, x_map], ["True", "MLE", "MAP"], ["k", "C0", "C1"]
):
ax.plot(
np.array([t.min(), t.max()]),
np.array([t.min(), t.max()]) * est[1] + est[0],
color=c,
ls="--" if est_label == "MAP" else "-",
lw=4,
label=rf"{est_label}: $x_0$ = {est[0]:.2f}, $x_1$ = {est[1]:.2f}",
)
ax.scatter(t, y, c="r", s=70)
ax.scatter(t, yn, c="g", s=70)
ax.legend()
fig.tight_layout()

###############################################################################
# Let's solve this problem the Bayesian way, which consists in obtaining the
# posterior probability :math:`p(\mathbf{x}\,|\,\mathbf{y})` via Bayes theorem:
#
# .. math::
# \underbrace{p(\mathbf{x} \,|\, \mathbf{y})}_{\text{posterior}}
# \propto \overbrace{p(\mathbf{y} \,|\, \mathbf{x})}^{\text{likelihood}}\;
# \overbrace{p(\mathbf{x})}^{\text{prior}}
#
# To do so, we need to define the priors and the likelihood.
#
# As hinted above, priors in Bayesian analysis can be interpreted as the
# probabilistic equivalent to regularization. Finding the maximum a posteriori
# (MAP) estimate to a least-squares problem with a Gaussian prior on the
# parameters is equivalent to applying a Tikhonov (L2) regularization to these
# parameters. A Laplace prior is equivalent to a sparse (L1) regularization.
# In addition, the weight of the regularization is controlled by the "scale" of
# the distribution of the prior; the standard deviation (in the case of a Gaussian)
# is inversely proportional strength of the regularization. So if we use the same
# sigma_prior above as the standard deviation of our prior distribition, we
# should get the same MAP out of them. In practice, in Bayesian analysis we are
# not only interested in point estimates like MAP, but rather, the whole
# posterior distribution. If you want the MAP only, there are better,
# methods to obtain them, such as the one shown above.
#
# In this problem we will use weak, not very informative priors, by setting
# their prior to accept a wide range of probable values. This is equivalent to
# setting the "weights" to be small, as shown above:
#
# .. math::
# x_0 \sim N(0, 20)
#
# x_1 \sim N(0, 20)
#
# \sigma \sim \text{HalfCauchy}(10)
#
# The (log) likelihood in Bayesian analysis is the equivalent of the cost
# function in deterministic inverse problems. In this case we have already
# seen this likelihood:
#
# .. math::
# p(\mathbf{y}\,|\,\mathbf{x}) \sim N(\mathbf{A}\mathbf{x}, \sigma)
#

# Construct a PyTensor `Op` which can be used in a PyMC model.
pytensor_lrop = pylops.PyTensorOperator(LRop)
dims = pytensor_lrop.dims # Inherits dims, dimsd and shape from LRop

# Construct the PyMC model
with pm.Model() as model:
y_data = pm.Data("y_data", yn)

# Define priors
sp = pm.HalfCauchy("σ", beta=10)
xp = pm.Normal("x", 0, sigma=sigma_prior, shape=dims)
mu = pm.Deterministic("mu", pytensor_lrop(xp))

# Define likelihood
likelihood = pm.Normal("y", mu=mu, sigma=sp, observed=y_data)

# Inference!
idata = pm.sample(500, tune=200, chains=2)

###############################################################################
# The plot below is known as the "trace" plot. The left column displays the
# posterior distributions of all latent variables in the model. The top-left
# plot has multiple colored posteriors, one for each parameter of the latent
# vector :math:`\mathbf{x}`. The bottom left plot displays the posterior of the
# estimated noise :math:`\sigma`.
#
# In these plots there are multiple distributions of the same color and
# multiple line styles. Each of these represents a "chain". A chain is a single
# run of a Monte Carlo algorithm. Generally, Monte Carlo methods run various
# chains to ensure that all regions of the posterior distribution are sampled.
# These chains are shown on the right hand plots.

axes = az.plot_trace(idata, figsize=(10, 7), var_names=["~mu"])
axes[0, 0].axvline(x[0], label="True Intercept", lw=2, color="k")
axes[0, 0].axvline(x_map[0], label="Intercept MAP", lw=2, color="C0", ls="--")
axes[0, 0].axvline(x[1], label="True Slope", lw=2, color="darkgray")
axes[0, 0].axvline(x_map[1], label="Slope MAP", lw=2, color="C1", ls="--")
axes[0, 1].axhline(x[0], label="True Intercept", lw=2, color="k")
axes[0, 1].axhline(x_map[0], label="Intercept MAP", lw=2, color="C0", ls="--")
axes[0, 1].axhline(x[1], label="True Slope", lw=2, color="darkgray")
axes[0, 1].axhline(x_map[1], label="Slope MAP", lw=2, color="C1", ls="--")
axes[1, 0].axvline(sigma, label="True Sigma", lw=2, color="k")
axes[1, 0].axvline(noise_map, label="Sigma MAP", lw=2, color="C0", ls="--")
axes[1, 1].axhline(sigma, label="True Sigma", lw=2, color="k")
axes[1, 1].axhline(noise_map, label="Sigma MAP", lw=2, color="C0", ls="--")
for ax in axes.ravel():
ax.legend()
ax.get_figure().tight_layout()

################################################################################
# With this model, we can obtain an uncertainty measurement via the High Density
# Interval. To do that, we need to sample the "preditive posterior", that is,
# the posterior distribution of the data, given the model. What this does is
# sample the latent vetors from their posteriors (above), and use the model
# to construct realizations of the data given these realizations. They represent
# what the model thinks the data should look like, given everything it has
# already seen.

with model:
pm.sample_posterior_predictive(idata, extend_inferencedata=True)

###############################################################################
# sphinx_gallery_thumbnail_number = 3
fig, ax = plt.subplots(figsize=(8, 4))
az.plot_hdi(
t,
idata.posterior_predictive["y"],
fill_kwargs={"label": "95% HDI"},
hdi_prob=0.95,
ax=ax,
)
for est, est_label, c in zip(
[x, x_mle, x_map], ["True", "MLE", "MAP"], ["k", "C0", "C1"]
):
ax.plot(
np.array([t.min(), t.max()]),
np.array([t.min(), t.max()]) * est[1] + est[0],
color=c,
ls="--" if est_label == "MAP" else "-",
lw=4,
label=rf"{est_label}: $x_0$ = {est[0]:.2f}, $x_1$ = {est[1]:.2f}",
)
ax.scatter(t, y, c="r", s=70)
ax.scatter(t, yn, c="g", s=70)
ax.legend()
fig.tight_layout()
6 changes: 3 additions & 3 deletions examples/plot_slopeest.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
precondition sparsity-promoting inverse problems.
We will show examples of a variety of different settings, including a comparison
with the original implementation in [1].
with the original implementation in [1]_.
.. [1] van Vliet, L. J., Verbeek, P. W., "Estimators for orientation and
anisotropy in digitized images", Journal ASCI Imaging Workshop. 1995.
Expand Down Expand Up @@ -145,7 +145,7 @@
###############################################################################
# Concentric circles
# ------------------
# The original paper by van Vliet and Verbeek [1] has an example with concentric
# The original paper by van Vliet and Verbeek [1]_ has an example with concentric
# circles. We recover their original images and compare our implementation with
# theirs.

Expand Down Expand Up @@ -215,7 +215,7 @@ def rgb2gray(rgb):
###############################################################################
# Core samples
# ------------------
# The original paper by van Vliet and Verbeek [1] also has an example with images
# The original paper by van Vliet and Verbeek [1]_ also has an example with images
# of core samples. Since the original paper does not have a scale with which to
# plot the angles, we have chosen ours it to match their image as closely as
# possible.
Expand Down
1 change: 1 addition & 0 deletions pylops/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@
from .config import *
from .linearoperator import *
from .torchoperator import *
from .pytensoroperator import *
from .jaxoperator import *
from .basicoperators import *
from . import (
Expand Down
14 changes: 8 additions & 6 deletions pylops/basicoperators/matrixmult.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,12 +79,14 @@ def __init__(
else:
otherdims = _value_or_sized_to_array(otherdims)
self.otherdims = np.array(otherdims, dtype=int)
dims, dimsd = np.insert(self.otherdims, 0, self.A.shape[1]), np.insert(
self.otherdims, 0, self.A.shape[0]
dims, dimsd = (
np.insert(self.otherdims, 0, self.A.shape[1]),
np.insert(self.otherdims, 0, self.A.shape[0]),
)
self.dimsflatten, self.dimsdflatten = (
np.insert([np.prod(self.otherdims)], 0, self.A.shape[1]),
np.insert([np.prod(self.otherdims)], 0, self.A.shape[0]),
)
self.dimsflatten, self.dimsdflatten = np.insert(
[np.prod(self.otherdims)], 0, self.A.shape[1]
), np.insert([np.prod(self.otherdims)], 0, self.A.shape[0])
self.reshape = True
explicit = False

Expand Down Expand Up @@ -138,7 +140,7 @@ def inv(self) -> NDArray:
r"""Return the inverse of :math:`\mathbf{A}`.
Returns
----------
-------
Ainv : :obj:`numpy.ndarray`
Inverse matrix.
Expand Down
2 changes: 1 addition & 1 deletion pylops/basicoperators/regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,7 @@ def apply(self, t: npt.ArrayLike, x: NDArray) -> NDArray:
Regression coefficients
Returns
----------
-------
y : :obj:`numpy.ndarray`
Values along y-axis
Expand Down
Loading

0 comments on commit a033970

Please sign in to comment.