The goal of evalGSVAsig is to identify which genes are contributing most to a GSVA score.
You can install the development version of evalGSVAsig from GitHub with:
# install.packages("devtools")
devtools::install_github("lkroeh/evalGSVAsig")
This is a basic example which shows the format of the data:
library(evalGSVAsig)
#example gene list
sig <- c("GENE1", "GENE2", "GENE3")
signature_list <- c(list(sig))
names(signature_list) <- c("signature1")
#run function
output <- evalGSVAsig::GSVAsignatureRanking(eset, signature_list)
#view output
#print df of genes ordered by correlation to GSVA scores
output[[1]]
#show heatmap of ALL gene expression in relation to GSVA score
output[[2]]
#show heatmap of SIGNATURE gene expression in relation to GSVA score
output[[3]]
#get expression with GSVA scores saved in pData
output[[4]]
With sample data:
#with our sample data
data(signatures)
data(eset)
output <- evalGSVAsig::GSVAsignatureRanking(eset = eset, signature = signatures, metacol = 'hpv_status')
View tables:
#This table contains all genes
head(output[[1]])
#> correlation gene rank
#> 470 0.7223057 WFDC12 1
#> 75 0.7145882 ASPRV1 2
#> 481 0.7058520 LCE3E 3
#> 458 0.6744871 DSC1 4
#> 234 0.6293875 DSG1 5
#> 454 0.6065752 ARG1 6
#This table contains only signature genes
head(output[[2]])
#> correlation gene rank
#> 470 0.7223057 WFDC12 1
#> 481 0.7058520 LCE3E 3
#> 458 0.6744871 DSC1 4
#> 454 0.6065752 ARG1 6
#> 483 0.6016642 LCE2C 7
#> 465 0.5928593 LCE2B 8
View heatmap that plots all signature and non-signature genes:
output[[3]]
View heatmap that plots only signature genes:
output[[4]]