Enable logical replication on your PostgreSQL database to capture changes.
- Set access keys
aws configure set aws_access_key_id testUser
aws configure set aws_secret_access_key testAccessKey
aws configure set region us-east-2
-
Configure PostgreSQL for Logical Replication:
ALTER SYSTEM SET wal_level = logical; ALTER SYSTEM SET max_replication_slots = 4; ALTER SYSTEM SET max_wal_senders = 4; CREATE TABLE customers ( id SERIAL PRIMARY KEY, first_name VARCHAR(50) NOT NULL, last_name VARCHAR(50) NOT NULL, email VARCHAR(100) UNIQUE NOT NULL, phone_number VARCHAR(20), address TEXT, city VARCHAR(50), state VARCHAR(50), zip_code VARCHAR(10), country VARCHAR(50), created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ); ALTER TABLE public.customers REPLICA IDENTITY FULL;
-
Create a Replication Slot:
SELECT * FROM pg_create_logical_replication_slot('my_slot', 'pgoutput');
-
Create a Publication:
CREATE PUBLICATION my_publication FOR ALL TABLES;
Debezium is an open-source tool that can stream changes from the replication slot to a Kafka topic.
-
Set Up Debezium Connector: Configure Debezium to connect to your PostgreSQL database and capture changes.
sh deploy-source.sh
-
Set Up S3 Sink Connector: Configure Kafka to connect to S3.
sh deploy-sink.sh
Use Kafka to transport the changes captured by Debezium.
- Run Kafka and Kafka Connect: Ensure Kafka and Kafka Connect are running, and the Debezium connector is configured to stream changes to Kafka topics.
Use Apache Spark to process Kafka streams and write data to Parquet files.
- Spark Structured Streaming:
from pyspark.sql import SparkSession from pyspark.sql.functions import from_json, col from pyspark.sql.types import StructType, StructField, StringType, IntegerType spark = SparkSession.builder \ .appName("KafkaToParquet") \ .getOrCreate() schema = StructType([ StructField("op", StringType()), StructField("before", StructType([ StructField("id", IntegerType()), StructField("name", StringType()) ])), StructField("after", StructType([ StructField("id", IntegerType()), StructField("name", StringType()) ])) ]) kafka_df = spark.readStream \ .format("kafka") \ .option("kafka.bootstrap.servers", "localhost:9092") \ .option("subscribe", "dbserver1.public.customers") \ .load() json_df = kafka_df.select(from_json(col("value").cast("string"), schema).alias("data")) parquet_df = json_df.select("data.after.*") query = parquet_df.writeStream \ .outputMode("append") \ .format("parquet") \ .option("path", "/path/to/parquet/files") \ .option("checkpointLocation", "/path/to/checkpoint/dir") \ .start() query.awaitTermination()
-
Use Apache Hudi: Apache Hudi provides capabilities for managing Parquet files and incremental data processing.
# Read the Hudi dataset hudi_df = spark.read.format("hudi").load("/path/to/parquet/files") hudi_df.createOrReplaceTempView("hudi_table") spark.sql("SELECT * FROM hudi_table WHERE ...").show()
-
Use Spark SQL:
parquet_df = spark.read.parquet("/path/to/parquet/files") parquet_df.createOrReplaceTempView("parquet_table") spark.sql("SELECT * FROM parquet_table WHERE ...").show()
- Enable logical replication in PostgreSQL.
- Use Debezium to capture changes and stream them to Kafka.
- Use Spark Structured Streaming to process Kafka streams and write them to Parquet files.
- Use Apache Hudi or Spark SQL to query the Parquet files.