Skip to content
/ DECA Public

Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

License

Notifications You must be signed in to change notification settings

mmlab-cv/DECA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PWC PWC arXiv

DECA

Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is written using Pytorch Lightning. Please use Pipenv to configure the virtual environment required to run the code.

Teaser Image

How to run

Use the following command to configure the virtual environment:

pipenv install

To configure all the network parameters, including the dataset paths and hyperparameters, please edit the file:

config/config_TV.cfg

or add each parameter as a runtime flag while executing the main.py file as follows:

python main.py --flagfile config/config_TV.cfg

As an example, to run the network in training mode with a dataset stored in , you can run the following command:

python main.py --flagfile config/config_TV.cfg --mode train --dataset_dir <datasetpath>

About

Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages