Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
🛠 DevTools 🛠
Install mlflow from this PR
Checkout with GitHub CLI
Related Issues/PRs
#xxxWhat changes are proposed in this pull request?
Paddle x-version tests have been failing: https://github.com/mlflow-automation/mlflow/actions/runs/8156896966
The root cause is that
google-cloud-storage
released 2.15.0 yesterday, which is incompatible withprotobuf==3.20.0
pin that we set in thepaddle < 2.5.0
tests.To fix, pin
google-cloud-storage==2.14.0
in older paddle tests.How is this PR tested?
Tests are now passing:
https://github.com/mlflow/mlflow/actions/runs/8167367979/job/22327654779?pr=11338
Does this PR require documentation update?
Release Notes
Is this a user-facing change?
What component(s), interfaces, languages, and integrations does this PR affect?
Components
area/artifacts
: Artifact stores and artifact loggingarea/build
: Build and test infrastructure for MLflowarea/deployments
: MLflow Deployments client APIs, server, and third-party Deployments integrationsarea/docs
: MLflow documentation pagesarea/examples
: Example codearea/model-registry
: Model Registry service, APIs, and the fluent client calls for Model Registryarea/models
: MLmodel format, model serialization/deserialization, flavorsarea/recipes
: Recipes, Recipe APIs, Recipe configs, Recipe Templatesarea/projects
: MLproject format, project running backendsarea/scoring
: MLflow Model server, model deployment tools, Spark UDFsarea/server-infra
: MLflow Tracking server backendarea/tracking
: Tracking Service, tracking client APIs, autologgingInterface
area/uiux
: Front-end, user experience, plotting, JavaScript, JavaScript dev serverarea/docker
: Docker use across MLflow's components, such as MLflow Projects and MLflow Modelsarea/sqlalchemy
: Use of SQLAlchemy in the Tracking Service or Model Registryarea/windows
: Windows supportLanguage
language/r
: R APIs and clientslanguage/java
: Java APIs and clientslanguage/new
: Proposals for new client languagesIntegrations
integrations/azure
: Azure and Azure ML integrationsintegrations/sagemaker
: SageMaker integrationsintegrations/databricks
: Databricks integrationsHow should the PR be classified in the release notes? Choose one:
rn/none
- No description will be included. The PR will be mentioned only by the PR number in the "Small Bugfixes and Documentation Updates" sectionrn/breaking-change
- The PR will be mentioned in the "Breaking Changes" sectionrn/feature
- A new user-facing feature worth mentioning in the release notesrn/bug-fix
- A user-facing bug fix worth mentioning in the release notesrn/documentation
- A user-facing documentation change worth mentioning in the release notes