Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add evaluate_ragas component #715

Merged
merged 5 commits into from
Dec 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions components/evaluate_ragas/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
FROM --platform=linux/amd64 python:3.8-slim as base

# System dependencies
RUN apt-get update && \
apt-get upgrade -y && \
apt-get install git -y

# Install requirements
COPY requirements.txt /
RUN pip3 install --no-cache-dir -r requirements.txt

# Install Fondant
# This is split from other requirements to leverage caching
ARG FONDANT_VERSION=main
RUN pip3 install fondant[component,aws,azure,gcp]@git+https://github.com/ml6team/fondant@${FONDANT_VERSION}

# Set the working directory to the component folder
WORKDIR /component
COPY src/ src/

FROM base as test
COPY tests/ tests/
RUN pip3 install --no-cache-dir -r tests/requirements.txt
ARG OPENAI_KEY
ENV OPENAI_KEY=${OPENAI_KEY}
RUN python -m pytest tests

FROM base
WORKDIR /component/src
ENTRYPOINT ["fondant", "execute", "main"]
53 changes: 53 additions & 0 deletions components/evaluate_ragas/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
# retriever_eval_ragas

### Description
Component that evaluates the retriever using RAGAS

### Inputs / outputs

**This component consumes:**

- text: string
- retrieved_chunks: list<item: string>

**This component produces no data.**

### Arguments

The component takes the following arguments to alter its behavior:

| argument | type | description | default |
| -------- | ---- | ----------- | ------- |
| module | str | Module from which the LLM is imported. Defaults to langchain.llms | langchain.llms |
| llm_name | str | Name of the selected llm | / |
| llm_kwargs | dict | Arguments of the selected llm | / |

### Usage

You can add this component to your pipeline using the following code:

```python
from fondant.pipeline import Pipeline


pipeline = Pipeline(...)

dataset = pipeline.read(...)

dataset = dataset.apply(
"evaluate_ragas",
arguments={
# Add arguments
# "module": "langchain.llms",
# "llm_name": ,
# "llm_kwargs": {},
}
)
```

### Testing

You can run the tests using docker with BuildKit. From this directory, run:
```
docker build . --target test
```
31 changes: 31 additions & 0 deletions components/evaluate_ragas/fondant_component.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
name: retriever_eval_ragas
description: Component that evaluates the retriever using RAGAS
image: fndnt/retriever_eval:dev
tags:
- Text processing

consumes:
text:
type: string
retrieved_chunks:
type: array
items:
type: string

produces:
additionalProperties: true
# Overwrite with metrics to be computed by ragas
# (https://docs.ragas.io/en/latest/concepts/metrics/index.html)


args:
module:
description: Module from which the LLM is imported. Defaults to langchain.llms
type: str
default: "langchain.llms"
llm_name:
description: Name of the selected llm
type: str
llm_kwargs:
description: Arguments of the selected llm
type: dict
1 change: 1 addition & 0 deletions components/evaluate_ragas/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
ragas==0.0.21
81 changes: 81 additions & 0 deletions components/evaluate_ragas/src/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import typing as t

import pandas as pd
from datasets import Dataset
from fondant.component import PandasTransformComponent
from ragas import evaluate
from ragas.llms import LangchainLLM


class RetrieverEval(PandasTransformComponent):
def __init__(
self,
*,
module: str,
llm_name: str,
llm_kwargs: dict,
produces: t.Dict[str, t.Any],
**kwargs,
) -> None:
"""
Args:
module: Module from which the LLM is imported. Defaults to langchain.llms
llm_name: Name of the selected llm
llm_kwargs: Arguments of the selected llm
produces: RAGAS metrics to compute.
kwargs: Unhandled keyword arguments passed in by Fondant.
"""
self.llm = self.extract_llm(
module=module,
model_name=llm_name,
model_kwargs=llm_kwargs,
)
self.gpt_wrapper = LangchainLLM(llm=self.llm)
self.metric_functions = self.extract_metric_functions(
metrics=list(produces.keys()),
)
self.set_llm(self.metric_functions)

# import the metric functions selected
@staticmethod
def import_from(module, name):
module = __import__(module, fromlist=[name])
return getattr(module, name)

def extract_llm(self, module, model_name, model_kwargs):
module = self.import_from(module, model_name)
return module(**model_kwargs)

def extract_metric_functions(self, metrics: list):
functions = []
for metric in metrics:
functions.append(self.import_from("ragas.metrics", metric))
return functions

def set_llm(self, metric_functions: list):
for metric_function in metric_functions:
metric_function.llm = self.gpt_wrapper

# evaluate the retriever
@staticmethod
def create_hf_ds(dataframe: pd.DataFrame):
dataframe = dataframe.rename(
columns={"text": "question", "retrieved_chunks": "contexts"},
)
return Dataset.from_pandas(dataframe)

def ragas_eval(self, dataset):
return evaluate(dataset=dataset, metrics=self.metric_functions)

def transform(self, dataframe: pd.DataFrame) -> pd.DataFrame:
hf_dataset = self.create_hf_ds(
dataframe=dataframe[["text", "retrieved_chunks"]],
)
if "id" in hf_dataset.column_names:
hf_dataset = hf_dataset.remove_columns("id")

result = self.ragas_eval(dataset=hf_dataset)
results_df = result.to_pandas()
results_df = results_df.set_index(dataframe.index)

return results_df
117 changes: 117 additions & 0 deletions components/evaluate_ragas/tests/component_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
import os

import pandas as pd
import pyarrow as pa
from main import RetrieverEval


def test_transform():
input_dataframe = pd.DataFrame(
{
"text": [
"Lorem ipsum dolor sit amet, consectetur adipiscing elit?",
"Sed massa massa, interdum a porttitor sit amet, semper eget nunc?",
],
"retrieved_chunks": [
[
"Lorem ipsum dolor sit amet, consectetur adipiscing elit. \
Quisque ut efficitur neque. Aenean mollis eleifend est, \
eu laoreet magna egestas quis. Cras id sagittis erat. \
Aliquam vel blandit arcu. Morbi ac nulla ullamcorper, \
rutrum neque nec, pellentesque diam. Nulla nec tempor \
enim. Suspendisse a volutpat leo, quis varius dolor.",
"Curabitur placerat ultrices mauris et lobortis. Maecenas \
laoreet tristique sagittis. Integer facilisis eleifend \
dolor, quis fringilla orci eleifend ac. Vestibulum nunc \
odio, tincidunt ut augue et, ornare vehicula sapien. Orci \
varius natoque penatibus et magnis dis parturient montes, \
nascetur ridiculus mus. Sed auctor felis lacus, rutrum \
tempus ligula viverra ac. Curabitur pharetra mauris et \
ornare pulvinar. Suspendisse a ultricies nisl. Mauris \
sit amet odio condimentum, venenatis orci vitae, \
tincidunt purus. Ut ullamcorper convallis ligula ac \
posuere. In efficitur enim ac lacus dignissim congue. \
Nam turpis augue, aliquam et velit sit amet, varius \
euismod ante. Duis volutpat nisl sit amet auctor tempus.\
Vivamus in eros ex.",
],
[
"am leo massa, ultricies eu viverra ac, commodo non sapien. \
Mauris et mauris sollicitudin, ultricies ex ac, luctus \
nulla.",
"Cras tincidunt facilisis mi, ac eleifend justo lobortis ut. \
In lobortis cursus ante et faucibus. Vestibulum auctor \
felis at odio varius, ac vulputate leo dictum. \
Phasellus in augue ante. Aliquam aliquam mauris \
sed tellus egestas fermentum.",
],
],
},
)

component = RetrieverEval(
module="langchain.llms",
llm_name="OpenAI",
llm_kwargs={"openai_api_key": os.environ["OPENAI_KEY"]},
produces={
"context_precision": pa.float32(),
"context_relevancy": pa.float32(),
},
)

output_dataframe = component.transform(input_dataframe)

expected_output_dataframe = pd.DataFrame(
{
"question": [
"Lorem ipsum dolor sit amet, consectetur adipiscing elit?",
"Sed massa massa, interdum a porttitor sit amet, semper eget nunc?",
],
"contexts": [
[
"Lorem ipsum dolor sit amet, consectetur adipiscing elit. \
Quisque ut efficitur neque. Aenean mollis eleifend est, \
eu laoreet magna egestas quis. Cras id sagittis erat. \
Aliquam vel blandit arcu. Morbi ac nulla ullamcorper, \
rutrum neque nec, pellentesque diam. Nulla nec tempor \
enim. Suspendisse a volutpat leo, quis varius dolor.",
"Curabitur placerat ultrices mauris et lobortis. Maecenas \
laoreet tristique sagittis. Integer facilisis eleifend \
dolor, quis fringilla orci eleifend ac. Vestibulum nunc \
odio, tincidunt ut augue et, ornare vehicula sapien. Orci \
varius natoque penatibus et magnis dis parturient montes, \
nascetur ridiculus mus. Sed auctor felis lacus, rutrum \
tempus ligula viverra ac. Curabitur pharetra mauris et \
ornare pulvinar. Suspendisse a ultricies nisl. Mauris \
sit amet odio condimentum, venenatis orci vitae, \
tincidunt purus. Ut ullamcorper convallis ligula ac \
posuere. In efficitur enim ac lacus dignissim congue. \
Nam turpis augue, aliquam et velit sit amet, varius \
euismod ante. Duis volutpat nisl sit amet auctor tempus.\
Vivamus in eros ex.",
],
[
"am leo massa, ultricies eu viverra ac, commodo non sapien. \
Mauris et mauris sollicitudin, ultricies ex ac, luctus \
nulla.",
"Cras tincidunt facilisis mi, ac eleifend justo lobortis ut. \
In lobortis cursus ante et faucibus. Vestibulum auctor \
felis at odio varius, ac vulputate leo dictum. \
Phasellus in augue ante. Aliquam aliquam mauris \
sed tellus egestas fermentum.",
],
],
"context_precision": 0.15,
"context_relevancy": 0.35,
},
)

# Check if columns are the same
columns_equal = expected_output_dataframe.columns.equals(output_dataframe.columns)

# Check if data types within each column match
dtypes_match = expected_output_dataframe.dtypes.equals(output_dataframe.dtypes)

# Check if both conditions are met
assert columns_equal
assert dtypes_match
2 changes: 2 additions & 0 deletions components/evaluate_ragas/tests/pytest.ini
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
[pytest]
pythonpath = ../src
1 change: 1 addition & 0 deletions components/evaluate_ragas/tests/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
pytest==7.4.2
Loading