Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/sagemaker compiler #662

Merged
merged 9 commits into from
Nov 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@ adlfs = { version = ">= 2023.4.0", optional = true }
docker = {version = ">= 6.1.3", optional = true }
kfp = { version = "2.3.0", optional = true, extras =["kubernetes"] }
google-cloud-aiplatform = { version = "1.34.0", optional = true}
sagemaker = {version = ">= 2.197.0", optional = true}

[tool.poetry.extras]
component = ["dask"]
Expand All @@ -68,6 +69,7 @@ gcp = ["gcsfs"]

kfp = ["docker", "kfp"]
vertex = ["docker", "kfp", "google-cloud-aiplatform"]
sagemaker = ["sagemaker"]
docker = ["docker"]

[tool.poetry.group.test.dependencies]
Expand Down
169 changes: 169 additions & 0 deletions src/fondant/pipeline/compiler.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
import json
import logging
import os
import tempfile
import typing as t
from abc import ABC, abstractmethod
from dataclasses import asdict, dataclass
Expand Down Expand Up @@ -515,3 +517,170 @@ def _set_configuration(self, task, fondant_component_operation):
task.set_accelerator_type(accelerator_name)

return task


class SagemakerCompiler(Compiler):
def __init__(self):
self._resolve_imports()

def _resolve_imports(self):
try:
import sagemaker
import sagemaker.processing
import sagemaker.workflow.pipeline
import sagemaker.workflow.steps

self.sagemaker = sagemaker

except ImportError:
msg = """You need to install the sagemaker extras to use the sagemaker compiler,\n
you can install it with `pip install fondant[sagemaker]`"""
raise ImportError(
msg,
)

def _get_build_command(
self,
metadata: Metadata,
arguments: t.Dict[str, t.Any],
dependencies: t.List[str] = [],
) -> t.List[str]:
# add metadata argument to command
command = ["--metadata", f"'{metadata.to_json()}'"]

# add in and out manifest paths to command
command.extend(
[
"--output_manifest_path",
f"{metadata.base_path}/{metadata.pipeline_name}/{metadata.run_id}/"
f"{metadata.component_id}/manifest.json",
],
)

# add arguments if any to command
for key, value in arguments.items():
if isinstance(value, (dict, list)):
command.extend([f"--{key}", f"'{json.dumps(value)}'"])
else:
command.extend([f"--{key}", f"'{value}'"])

# resolve dependencies
if dependencies:
for dependency in dependencies:
# there is only an input manifest if the component has dependencies
command.extend(
[
"--input_manifest_path",
f"{metadata.base_path}/{metadata.pipeline_name}/{metadata.run_id}/"
f"{dependency}/manifest.json",
],
)

return command

def compile(
self,
pipeline: Pipeline,
output_path: str,
*,
instance_type: str = "ml.t3.medium",
mrchtr marked this conversation as resolved.
Show resolved Hide resolved
role_arn: t.Optional[str] = None,
) -> None:
"""Compile a fondant pipeline to sagemaker pipeline spec and save it
to a specified output path.

Args:
pipeline: the pipeline to compile
output_path: the path where to save the Kubeflow pipeline spec.
instance_type: the instance type to use for the processing steps
(see: https://aws.amazon.com/ec2/instance-types/ for options).
role_arn: the Amazon Resource Name role to use for the processing steps,
if none provided the `sagemaker.get_execution_role()` role will be used.
"""
run_id = pipeline.get_run_id()
path = pipeline.base_path
pipeline.validate(run_id=run_id)

component_cache_key = None

steps: t.List[t.Any] = []

with tempfile.TemporaryDirectory(dir=os.getcwd()) as tmpdirname:
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

the scripts are uploaded to s3 by sagemaker once we compile the pipeline that is why we save the files to a temp folder that only gets deleted at the end.

for component_name, component in pipeline._graph.items():
component_op = component["fondant_component_op"]
component_cache_key = component_op.get_component_cache_key(
previous_component_cache=component_cache_key,
)

metadata = Metadata(
pipeline_name=pipeline.name,
run_id=run_id,
base_path=path,
component_id=component_name,
cache_key=component_cache_key,
)

logger.info(f"Compiling service for {component_name}")

command = self._get_build_command(
metadata,
component_op.arguments,
component["dependencies"],
)
depends_on = [steps[-1]] if component["dependencies"] else []

script_path = self.generate_component_script(
component_name,
command,
tmpdirname,
)

if not role_arn:
# if no role is provided use the default sagemaker execution role
# https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-ex-role.html
role_arn = self.sagemaker.get_execution_role()
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you add a comment on what this does exactly?


processor = self.sagemaker.processing.ScriptProcessor(
mrchtr marked this conversation as resolved.
Show resolved Hide resolved
image_uri=component_op.component_spec.image,
command=["bash"],
instance_type=instance_type,
instance_count=1,
base_job_name=component_name,
role=role_arn,
)
step = self.sagemaker.workflow.steps.ProcessingStep(
name=component_name,
processor=processor,
depends_on=depends_on,
code=script_path,
)
steps.append(step)

sagemaker_pipeline = self.sagemaker.workflow.pipeline.Pipeline(
name=pipeline.name,
steps=steps,
)
with open(output_path, "w") as outfile:
json.dump(
json.loads(sagemaker_pipeline.definition()),
outfile,
indent=4,
)

def _set_configuration(self, *args, **kwargs) -> None:
raise NotImplementedError

def generate_component_script(
self,
component_name: str,
command: t.List[str],
directory: str,
) -> str:
"""Generate a bash script for a component to be used as input in a
sagemaker pipeline step. Returns the path to the script.
"""
content = " ".join(["fondant", "execute", "main", *command])

with open(f"{directory}/{component_name}.sh", "w") as f:
f.write(content)
return f"{directory}/{component_name}.sh"
51 changes: 51 additions & 0 deletions tests/test_compiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,12 @@

import pytest
from fondant.core.exceptions import InvalidPipelineDefinition
from fondant.core.manifest import Metadata
from fondant.pipeline import ComponentOp, Pipeline, Resources
from fondant.pipeline.compiler import (
DockerCompiler,
KubeFlowCompiler,
SagemakerCompiler,
VertexCompiler,
)
from fondant.testing import (
Expand Down Expand Up @@ -605,3 +607,52 @@ def test_caching_dependency_kfp(tmp_path_factory):
second_component_cache_key_dict[arg_list[0]]
!= second_component_cache_key_dict[arg_list[1]]
)


def test_sagemaker_build_command():
compiler = SagemakerCompiler()
metadata = Metadata(
pipeline_name="example_pipeline",
base_path="/foo/bar",
component_id="component_2",
run_id="example_pipeline_2024",
cache_key="42",
)
args = {"foo": "bar", "baz": "qux"}
command = compiler._get_build_command(metadata, args)

assert command == [
"--metadata",
'\'{"base_path": "/foo/bar", "pipeline_name": "example_pipeline", '
'"run_id": "example_pipeline_2024", "component_id": "component_2", '
'"cache_key": "42"}\'',
"--output_manifest_path",
"/foo/bar/example_pipeline/example_pipeline_2024/component_2/manifest.json",
"--foo",
"'bar'",
"--baz",
"'qux'",
]

# with dependencies
dependencies = ["component_1"]

command2 = compiler._get_build_command(metadata, args, dependencies=dependencies)

assert command2 == [
*command,
"--input_manifest_path",
"/foo/bar/example_pipeline/example_pipeline_2024/component_1/manifest.json",
]


def test_sagemaker_generate_script(tmp_path_factory):
compiler = SagemakerCompiler()
command = ["echo", "hello world"]
with tmp_path_factory.mktemp("temp") as fn:
script_path = compiler.generate_component_script("component_1", command, fn)

assert script_path == f"{fn}/component_1.sh"

with open(script_path) as f:
assert f.read() == "fondant execute main echo hello world"
Loading