-
Notifications
You must be signed in to change notification settings - Fork 28
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
239 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# Adapted from Training a simple neural network, with tensorflow/datasets data loading (https://jax.readthedocs.io/en/latest/notebooks/neural_network_with_tfds_data.html) | ||
|
||
import jax.numpy as jnp | ||
from jax import grad, jit, vmap | ||
from jax import random | ||
from jax.scipy.special import logsumexp | ||
import tensorflow as tf | ||
import tensorflow_datasets as tfds | ||
import time | ||
from zeus.monitor import ZeusMonitor | ||
from zeus.optimizer.power_limit import GlobalPowerLimitOptimizer | ||
|
||
# A helper function to randomly initialize weights and biases | ||
# for a dense neural network layer | ||
def random_layer_params(m, n, key, scale=1e-2): | ||
w_key, b_key = random.split(key) | ||
return scale * random.normal(w_key, (n, m)), scale * random.normal(b_key, (n,)) | ||
|
||
# Initialize all layers for a fully-connected neural network with sizes "sizes" | ||
def init_network_params(sizes, key): | ||
keys = random.split(key, len(sizes)) | ||
return [random_layer_params(m, n, k) for m, n, k in zip(sizes[:-1], sizes[1:], keys)] | ||
|
||
layer_sizes = [784, 512, 512, 10] | ||
step_size = 0.01 | ||
num_epochs = 10 | ||
batch_size = 128 | ||
n_targets = 10 | ||
params = init_network_params(layer_sizes, random.key(0)) | ||
|
||
def relu(x): | ||
return jnp.maximum(0, x) | ||
|
||
def predict(params, image): | ||
# per-example predictions | ||
activations = image | ||
for w, b in params[:-1]: | ||
outputs = jnp.dot(w, activations) + b | ||
activations = relu(outputs) | ||
|
||
final_w, final_b = params[-1] | ||
logits = jnp.dot(final_w, activations) + final_b | ||
return logits - logsumexp(logits) | ||
|
||
def one_hot(x, k, dtype=jnp.float32): | ||
"""Create a one-hot encoding of x of size k.""" | ||
return jnp.array(x[:, None] == jnp.arange(k), dtype) | ||
|
||
def accuracy(params, images, targets): | ||
target_class = jnp.argmax(targets, axis=1) | ||
predicted_class = jnp.argmax(batched_predict(params, images), axis=1) | ||
return jnp.mean(predicted_class == target_class) | ||
|
||
# Make a batched version of the `predict` function | ||
batched_predict = vmap(predict, in_axes=(None, 0)) | ||
|
||
def loss(params, images, targets): | ||
preds = batched_predict(params, images) | ||
return -jnp.mean(preds * targets) | ||
|
||
@jit | ||
def update(params, x, y): | ||
grads = grad(loss)(params, x, y) | ||
return [(w - step_size * dw, b - step_size * db) | ||
for (w, b), (dw, db) in zip(params, grads)] | ||
|
||
|
||
# Ensure TF does not see GPU and grab all GPU memory. | ||
tf.config.set_visible_devices([], device_type='GPU') | ||
|
||
data_dir = '/tmp/tfds' | ||
|
||
# Fetch full datasets for evaluation | ||
# tfds.load returns tf.Tensors (or tf.data.Datasets if batch_size != -1) | ||
# You can convert them to NumPy arrays (or iterables of NumPy arrays) with tfds.dataset_as_numpy | ||
mnist_data, info = tfds.load(name="mnist", batch_size=-1, data_dir=data_dir, with_info=True) | ||
mnist_data = tfds.as_numpy(mnist_data) | ||
train_data, test_data = mnist_data['train'], mnist_data['test'] | ||
num_labels = info.features['label'].num_classes | ||
h, w, c = info.features['image'].shape | ||
num_pixels = h * w * c | ||
|
||
# Full train set | ||
train_images, train_labels = train_data['image'], train_data['label'] | ||
train_images = jnp.reshape(train_images, (len(train_images), num_pixels)) | ||
train_labels = one_hot(train_labels, num_labels) | ||
|
||
# Full test set | ||
test_images, test_labels = test_data['image'], test_data['label'] | ||
test_images = jnp.reshape(test_images, (len(test_images), num_pixels)) | ||
test_labels = one_hot(test_labels, num_labels) | ||
|
||
print('Train:', train_images.shape, train_labels.shape) | ||
print('Test:', test_images.shape, test_labels.shape) | ||
|
||
def get_train_batches(): | ||
# as_supervised=True gives us the (image, label) as a tuple instead of a dict | ||
ds = tfds.load(name='mnist', split='train', as_supervised=True, data_dir=data_dir) | ||
# You can build up an arbitrary tf.data input pipeline | ||
ds = ds.batch(batch_size).prefetch(1) | ||
# tfds.dataset_as_numpy converts the tf.data.Dataset into an iterable of NumPy arrays | ||
return tfds.as_numpy(ds) | ||
|
||
monitor = ZeusMonitor() | ||
plo = GlobalPowerLimitOptimizer(monitor) | ||
|
||
for epoch in range(num_epochs): | ||
start_time = time.time() | ||
|
||
plo.on_epoch_begin() | ||
for x, y in get_train_batches(): | ||
plo.on_step_begin() | ||
x = jnp.reshape(x, (len(x), num_pixels)) | ||
y = one_hot(y, num_labels) | ||
params = update(params, x, y) | ||
plo.on_step_end() | ||
plo.on_epoch_end() | ||
|
||
epoch_time = time.time() - start_time | ||
|
||
train_acc = accuracy(params, train_images, train_labels) | ||
test_acc = accuracy(params, test_images, test_labels) | ||
print("Epoch {} in {:0.2f} sec".format(epoch, epoch_time)) | ||
print("Training set accuracy {}".format(train_acc)) | ||
print("Test set accuracy {}".format(test_acc)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
# Adapted from Training a simple neural network, with tensorflow/datasets data loading (https://jax.readthedocs.io/en/latest/notebooks/neural_network_with_tfds_data.html) | ||
|
||
import jax.numpy as jnp | ||
from jax import grad, jit, vmap | ||
from jax import random | ||
from jax.scipy.special import logsumexp | ||
import tensorflow as tf | ||
import tensorflow_datasets as tfds | ||
import time | ||
|
||
# A helper function to randomly initialize weights and biases | ||
# for a dense neural network layer | ||
def random_layer_params(m, n, key, scale=1e-2): | ||
w_key, b_key = random.split(key) | ||
return scale * random.normal(w_key, (n, m)), scale * random.normal(b_key, (n,)) | ||
|
||
# Initialize all layers for a fully-connected neural network with sizes "sizes" | ||
def init_network_params(sizes, key): | ||
keys = random.split(key, len(sizes)) | ||
return [random_layer_params(m, n, k) for m, n, k in zip(sizes[:-1], sizes[1:], keys)] | ||
|
||
layer_sizes = [784, 512, 512, 10] | ||
step_size = 0.01 | ||
num_epochs = 10 | ||
batch_size = 128 | ||
n_targets = 10 | ||
params = init_network_params(layer_sizes, random.key(0)) | ||
|
||
def relu(x): | ||
return jnp.maximum(0, x) | ||
|
||
def predict(params, image): | ||
# per-example predictions | ||
activations = image | ||
for w, b in params[:-1]: | ||
outputs = jnp.dot(w, activations) + b | ||
activations = relu(outputs) | ||
|
||
final_w, final_b = params[-1] | ||
logits = jnp.dot(final_w, activations) + final_b | ||
return logits - logsumexp(logits) | ||
|
||
def one_hot(x, k, dtype=jnp.float32): | ||
"""Create a one-hot encoding of x of size k.""" | ||
return jnp.array(x[:, None] == jnp.arange(k), dtype) | ||
|
||
def accuracy(params, images, targets): | ||
target_class = jnp.argmax(targets, axis=1) | ||
predicted_class = jnp.argmax(batched_predict(params, images), axis=1) | ||
return jnp.mean(predicted_class == target_class) | ||
|
||
# Make a batched version of the `predict` function | ||
batched_predict = vmap(predict, in_axes=(None, 0)) | ||
|
||
def loss(params, images, targets): | ||
preds = batched_predict(params, images) | ||
return -jnp.mean(preds * targets) | ||
|
||
@jit | ||
def update(params, x, y): | ||
grads = grad(loss)(params, x, y) | ||
return [(w - step_size * dw, b - step_size * db) | ||
for (w, b), (dw, db) in zip(params, grads)] | ||
|
||
|
||
# Ensure TF does not see GPU and grab all GPU memory. | ||
tf.config.set_visible_devices([], device_type='GPU') | ||
|
||
data_dir = '/tmp/tfds' | ||
|
||
# Fetch full datasets for evaluation | ||
# tfds.load returns tf.Tensors (or tf.data.Datasets if batch_size != -1) | ||
# You can convert them to NumPy arrays (or iterables of NumPy arrays) with tfds.dataset_as_numpy | ||
mnist_data, info = tfds.load(name="mnist", batch_size=-1, data_dir=data_dir, with_info=True) | ||
mnist_data = tfds.as_numpy(mnist_data) | ||
train_data, test_data = mnist_data['train'], mnist_data['test'] | ||
num_labels = info.features['label'].num_classes | ||
h, w, c = info.features['image'].shape | ||
num_pixels = h * w * c | ||
|
||
# Full train set | ||
train_images, train_labels = train_data['image'], train_data['label'] | ||
train_images = jnp.reshape(train_images, (len(train_images), num_pixels)) | ||
train_labels = one_hot(train_labels, num_labels) | ||
|
||
# Full test set | ||
test_images, test_labels = test_data['image'], test_data['label'] | ||
test_images = jnp.reshape(test_images, (len(test_images), num_pixels)) | ||
test_labels = one_hot(test_labels, num_labels) | ||
|
||
print('Train:', train_images.shape, train_labels.shape) | ||
print('Test:', test_images.shape, test_labels.shape) | ||
|
||
def get_train_batches(): | ||
# as_supervised=True gives us the (image, label) as a tuple instead of a dict | ||
ds = tfds.load(name='mnist', split='train', as_supervised=True, data_dir=data_dir) | ||
# You can build up an arbitrary tf.data input pipeline | ||
ds = ds.batch(batch_size).prefetch(1) | ||
# tfds.dataset_as_numpy converts the tf.data.Dataset into an iterable of NumPy arrays | ||
return tfds.as_numpy(ds) | ||
|
||
for epoch in range(num_epochs): | ||
start_time = time.time() | ||
for x, y in get_train_batches(): | ||
x = jnp.reshape(x, (len(x), num_pixels)) | ||
y = one_hot(y, num_labels) | ||
params = update(params, x, y) | ||
epoch_time = time.time() - start_time | ||
|
||
train_acc = accuracy(params, train_images, train_labels) | ||
test_acc = accuracy(params, test_images, test_labels) | ||
print("Epoch {} in {:0.2f} sec".format(epoch, epoch_time)) | ||
print("Training set accuracy {}".format(train_acc)) | ||
print("Test set accuracy {}".format(test_acc)) |