Master thesis available here.
Implemented using PyTorch v0.4.0 and Python 3.
Datasets:
- Get MNIST from yann.lecun.com
- Get MNIST-M from yaroslav.ganin.net
- Get ThinMNIST from my GitHub
Apart from the following arguments, you will need to specify an exp_name
, mnist_path
, mnist_m_path
and mnist_thin_path
.
Specify a GPU to run the code adding CUDA_VISIBLE_DEVICES=X
before the command.
Example of training command for the FCN Segmenter baseline:
python train_segm_baseline.py
Example of training command for the SGAN-S baseline:
python main.py --mode train
Example of training command for the SGAN-S + Uncond. baseline:
python main.py --mode train --da_type uncond --df_num_down 2 --lambda_fdom 1 --lambda_frf 1
Example of training command for the SGAN-S + In. Cond.:
python main.py --mode train --da_type input_cond --df_num_up 2 --df_num_down 4 --lambda_frf 1
Example of training command for the SGAN-S + Out. Cond.:
python main.py --mode train --da_type output_cond --df_num_up 2 --lambda_frf 1 --lambda_fdom 1