Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DV_GluJob_V4c-Archived_V4d_Created #7091

Merged
merged 16 commits into from
Jul 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
16 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -45,24 +45,11 @@ resource "aws_s3_object" "dms_dv_glue_job_s3_object_v2" {
etag = filemd5("glue-job/dms_dv_rds_and_s3_parquet_write_v2.py")
}

resource "aws_s3_object" "dms_dv_glue_job_s3_object_v4a" {
resource "aws_s3_object" "dms_dv_glue_job_s3_object_v4d" {
bucket = aws_s3_bucket.dms_dv_glue_job_s3_bucket.id
key = "dms_dv_rds_and_s3_parquet_write_v4a.py"
source = "glue-job/dms_dv_rds_and_s3_parquet_write_v4a.py"
etag = filemd5("glue-job/dms_dv_rds_and_s3_parquet_write_v4a.py")
}

resource "aws_s3_object" "dms_dv_glue_job_s3_object_v4b" {
bucket = aws_s3_bucket.dms_dv_glue_job_s3_bucket.id
key = "dms_dv_rds_and_s3_parquet_write_v4b.py"
source = "glue-job/dms_dv_rds_and_s3_parquet_write_v4b.py"
etag = filemd5("glue-job/dms_dv_rds_and_s3_parquet_write_v4b.py")
}
resource "aws_s3_object" "dms_dv_glue_job_s3_object_v4c" {
bucket = aws_s3_bucket.dms_dv_glue_job_s3_bucket.id
key = "dms_dv_rds_and_s3_parquet_write_v4c.py"
source = "glue-job/dms_dv_rds_and_s3_parquet_write_v4c.py"
etag = filemd5("glue-job/dms_dv_rds_and_s3_parquet_write_v4c.py")
key = "dms_dv_rds_and_s3_parquet_write_v4d.py"
source = "glue-job/dms_dv_rds_and_s3_parquet_write_v4d.py"
etag = filemd5("glue-job/dms_dv_rds_and_s3_parquet_write_v4d.py")
}

resource "aws_s3_object" "catalog_dv_table_glue_job_s3_object" {
Expand Down Expand Up @@ -151,141 +138,35 @@ EOF
)

}
# Note: Make sure 'max_table_size_mb' and 'spark.sql.files.maxPartitionBytes' values are the same.

# "--enable-spark-ui" = "false"
# "--spark-ui-event-logs-path" = "false"
# "--spark-event-logs-path" = "s3://${aws_s3_bucket.dms_dv_glue_job_s3_bucket.id}/spark_logs/"

resource "aws_glue_job" "dms_dv_glue_job_v4a" {
name = "dms-dv-glue-job-v4a"
description = "DMS Data Validation Glue-Job (PySpark)."
role_arn = aws_iam_role.dms_dv_glue_job_iam_role.arn
glue_version = "4.0"
worker_type = "G.1X"
number_of_workers = 16
default_arguments = {
"--script_bucket_name" = aws_s3_bucket.dms_dv_glue_job_s3_bucket.id
"--rds_db_host_ep" = split(":", aws_db_instance.database_2022.endpoint)[0]
"--rds_db_pwd" = aws_db_instance.database_2022.password
"--rds_sqlserver_db" = ""
"--rds_sqlserver_db_schema" = ""
"--rds_sqlserver_db_table" = ""
"--rds_db_tbl_pkeys_col_list" = ""
"--rds_df_trim_str_col_list" = ""
"--rds_df_trim_micro_sec_ts_col_list" = ""
"--jdbc_read_256mb_partitions" = "true"
"--jdbc_read_512mb_partitions" = "false"
"--jdbc_read_1gb_partitions" = "false"
"--rds_read_rows_fetch_size" = 100000
"--parquet_src_bucket_name" = aws_s3_bucket.dms_target_ep_s3_bucket.id
"--parquet_output_bucket_name" = aws_s3_bucket.dms_dv_parquet_s3_bucket.id
"--glue_catalog_db_name" = aws_glue_catalog_database.dms_dv_glue_catalog_db.name
"--glue_catalog_tbl_name" = "glue_df_output"
"--continuous-log-logGroup" = "/aws-glue/jobs/${aws_cloudwatch_log_group.dms_dv_cw_log_group.name}"
"--enable-continuous-cloudwatch-log" = "true"
"--enable-continuous-log-filter" = "true"
"--enable-metrics" = "true"
"--enable-auto-scaling" = "true"
"--conf" = <<EOF
spark.sql.legacy.parquet.datetimeRebaseModeInRead=CORRECTED
--conf spark.sql.parquet.aggregatePushdown=true
--conf spark.sql.shuffle.partitions=2001
--conf spark.sql.files.maxPartitionBytes=128m
EOF

}

connections = [aws_glue_connection.glue_rds_sqlserver_db_connection.name]
command {
python_version = "3"
script_location = "s3://${aws_s3_bucket.dms_dv_glue_job_s3_bucket.id}/dms_dv_rds_and_s3_parquet_write_v4a.py"
}

tags = merge(
local.tags,
{
Resource_Type = "Glue-Job that processes data sourced from both RDS and S3",
}
)

}

resource "aws_glue_job" "dms_dv_glue_job_v4b" {
name = "dms-dv-glue-job-v4b"
description = "DMS Data Validation Glue-Job (PySpark)."
role_arn = aws_iam_role.dms_dv_glue_job_iam_role.arn
glue_version = "4.0"
worker_type = "G.1X"
number_of_workers = 16
default_arguments = {
"--script_bucket_name" = aws_s3_bucket.dms_dv_glue_job_s3_bucket.id
"--rds_db_host_ep" = split(":", aws_db_instance.database_2022.endpoint)[0]
"--rds_db_pwd" = aws_db_instance.database_2022.password
"--rds_sqlserver_db" = ""
"--rds_sqlserver_db_schema" = ""
"--rds_sqlserver_db_table" = ""
"--rds_db_tbl_pkeys_col_list" = ""
"--rds_df_trim_str_col_list" = ""
"--rds_df_trim_micro_sec_ts_col_list" = ""
"--jdbc_read_256mb_partitions" = "true"
"--jdbc_read_512mb_partitions" = "false"
"--jdbc_read_1gb_partitions" = "false"
"--rds_read_rows_fetch_size" = 100000
"--parquet_src_bucket_name" = aws_s3_bucket.dms_target_ep_s3_bucket.id
"--parquet_output_bucket_name" = aws_s3_bucket.dms_dv_parquet_s3_bucket.id
"--glue_catalog_db_name" = aws_glue_catalog_database.dms_dv_glue_catalog_db.name
"--glue_catalog_tbl_name" = "glue_df_output"
"--continuous-log-logGroup" = "/aws-glue/jobs/${aws_cloudwatch_log_group.dms_dv_cw_log_group.name}"
"--enable-continuous-cloudwatch-log" = "true"
"--enable-continuous-log-filter" = "true"
"--enable-metrics" = "true"
"--enable-auto-scaling" = "true"
"--conf" = <<EOF
spark.sql.legacy.parquet.datetimeRebaseModeInRead=CORRECTED
--conf spark.sql.parquet.aggregatePushdown=true
--conf spark.sql.shuffle.partitions=2001
--conf spark.sql.files.maxPartitionBytes=128m
EOF

}

connections = [aws_glue_connection.glue_rds_sqlserver_db_connection.name]
command {
python_version = "3"
script_location = "s3://${aws_s3_bucket.dms_dv_glue_job_s3_bucket.id}/dms_dv_rds_and_s3_parquet_write_v4b.py"
}

tags = merge(
local.tags,
{
Resource_Type = "Glue-Job that processes data sourced from both RDS and S3",
}
)

}


resource "aws_glue_job" "dms_dv_glue_job_v4c" {
name = "dms-dv-glue-job-v4c"
resource "aws_glue_job" "dms_dv_glue_job_v4d" {
name = "dms-dv-glue-job-v4d"
description = "DMS Data Validation Glue-Job (PySpark)."
role_arn = aws_iam_role.dms_dv_glue_job_iam_role.arn
glue_version = "4.0"
worker_type = "G.1X"
number_of_workers = 16
worker_type = "G.2X"
number_of_workers = 5
default_arguments = {
"--script_bucket_name" = aws_s3_bucket.dms_dv_glue_job_s3_bucket.id
"--rds_db_host_ep" = split(":", aws_db_instance.database_2022.endpoint)[0]
"--rds_db_pwd" = aws_db_instance.database_2022.password
"--parquet_df_repartition_num" = 180
"--rds_df_repartition_num" = 0
"--parallel_jdbc_conn_num" = 45
"--prq_leftanti_join_rds" = "false"
"--parquet_df_repartition_num" = 32
"--parallel_jdbc_conn_num" = 4
"--rds_df_repartition_num" = 16
"--rds_upperbound_factor" = 8
"--rds_sqlserver_db" = ""
"--rds_sqlserver_db_schema" = ""
"--rds_sqlserver_db_table" = ""
"--rds_db_tbl_pkeys_col_list" = ""
"--rds_df_trim_str_col_list" = ""
"--rds_df_trim_str_columns" = "false"
"--rds_df_trim_micro_sec_ts_col_list" = ""
"--rds_upperbound_factor" = 45
"--parquet_src_bucket_name" = aws_s3_bucket.dms_target_ep_s3_bucket.id
"--parquet_output_bucket_name" = aws_s3_bucket.dms_dv_parquet_s3_bucket.id
"--glue_catalog_db_name" = aws_glue_catalog_database.dms_dv_glue_catalog_db.name
Expand All @@ -299,15 +180,15 @@ resource "aws_glue_job" "dms_dv_glue_job_v4c" {
spark.sql.legacy.parquet.datetimeRebaseModeInRead=CORRECTED
--conf spark.sql.parquet.aggregatePushdown=true
--conf spark.sql.shuffle.partitions=2001
--conf spark.sql.files.maxPartitionBytes=128m
--conf spark.sql.files.maxPartitionBytes=1g
EOF

}

connections = [aws_glue_connection.glue_rds_sqlserver_db_connection.name]
command {
python_version = "3"
script_location = "s3://${aws_s3_bucket.dms_dv_glue_job_s3_bucket.id}/dms_dv_rds_and_s3_parquet_write_v4c.py"
script_location = "s3://${aws_s3_bucket.dms_dv_glue_job_s3_bucket.id}/dms_dv_rds_and_s3_parquet_write_v4d.py"
}

tags = merge(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -709,19 +709,19 @@ def process_dv_for_table(rds_db_name, db_sch_tbl, total_files, total_size_mb) ->
msg_prefix = f"""df_rds_temp_t3-{rds_tbl_name}"""
LOGGER.info(f"""{loop_count}-{msg_prefix}: >> RE-PARTITIONING on {jdbc_partition_column} <<""")
df_rds_temp_t4 = df_rds_temp_t3.repartition(rds_df_repartition_num,
jdbc_partition_column)
jdbc_partition_column).cache()

msg_prefix = f"""df_rds_temp_t4-{rds_tbl_name}"""
LOGGER.info(f"""{loop_count}-{msg_prefix}: RDS-DF-Partitions = {df_rds_temp_t4.rdd.getNumPartitions()}""")
else:
df_rds_temp_t4 = df_rds_temp_t3.alias("df_rds_temp_t4")
df_rds_temp_t4 = df_rds_temp_t3.alias("df_rds_temp_t4").cache()

df_rds_temp_t4_count = df_rds_temp_t4.count()

# -------------------------------------------------------------------------------------------

df_filter_exp = f"""{jdbc_partition_column} between {jdbc_partition_col_lowerbound} and {jdbc_partition_col_upperbound}"""
df_prq_filtered_t3 = df_prq_read_t2.where(df_filter_exp)
df_prq_filtered_t3 = df_prq_read_t2.where(df_filter_exp).cache()
df_prq_filtered_t3_count = df_prq_filtered_t3.count()

if df_rds_temp_t4_count == df_prq_filtered_t3_count:
Expand Down Expand Up @@ -767,11 +767,14 @@ def process_dv_for_table(rds_db_name, db_sch_tbl, total_files, total_size_mb) ->
LOGGER.warn(f"{loop_count}-Validation Failed - 2")
df_dv_output = df_dv_output.union(df_subtract_temp)
# -----------------------------------------------------

else:
LOGGER.error(f"""df_rds_temp_t4_count ({df_rds_temp_t4_count}) != df_prq_filtered_t3_count ({df_prq_filtered_t3_count})""")
sys.exit(1)
# -------------

df_prq_filtered_t3.unpersist(True)
df_rds_temp_t4.unpersist(True)
current_processed_rows += df_rds_temp_t4_count

else:
Expand Down Expand Up @@ -803,18 +806,21 @@ def process_dv_for_table(rds_db_name, db_sch_tbl, total_files, total_size_mb) ->
msg_prefix = f"""df_rds_temp_t3-{rds_tbl_name}"""
LOGGER.info(f"""{loop_count}-{msg_prefix}: >> RE-PARTITIONING on {jdbc_partition_column} <<""")
df_rds_temp_t4 = df_rds_temp_t3.repartition(int(rds_df_repartition_num/2),
jdbc_partition_column)
jdbc_partition_column).cache()

msg_prefix = f"""df_rds_temp_t4-{rds_tbl_name}"""
LOGGER.info(f"""{loop_count}-{msg_prefix}: RDS-DF-Partitions = {df_rds_temp_t4.rdd.getNumPartitions()}""")
else:
df_rds_temp_t4 = df_rds_temp_t3.alias("df_rds_temp_t4")
df_rds_temp_t4 = df_rds_temp_t3.alias("df_rds_temp_t4").cache()

df_rds_temp_t4_count = df_rds_temp_t4.count()


df_filter_exp = f"""{jdbc_partition_column} between {jdbc_partition_col_lowerbound} and {jdbc_partition_col_upperbound}"""
df_prq_filtered_t3 = df_prq_read_t2.where(df_filter_exp).coalesce(int(parquet_df_repartition_num/2))
df_prq_filtered_t3 = df_prq_read_t2\
.where(df_filter_exp).coalesce(int(parquet_df_repartition_num/2))\
.cache()

df_prq_filtered_t3_count = df_prq_filtered_t3.count()

if df_rds_temp_t4_count == df_prq_filtered_t3_count:
Expand Down Expand Up @@ -849,6 +855,8 @@ def process_dv_for_table(rds_db_name, db_sch_tbl, total_files, total_size_mb) ->
sys.exit(1)
# ---------------------------------------------------------

df_prq_filtered_t3.unpersist(True)
df_rds_temp_t4.unpersist(True)
current_processed_rows += df_rds_temp_t4_count

LOGGER.info(f"""Total RDS fetch batch count: {loop_count}""")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -532,8 +532,8 @@ def process_dv_for_table(rds_db_name,
trim_str_msg = ""
t2_rds_str_col_trimmed = False
if args.get("rds_df_trim_str_columns", "false") == "true":
msg_prefix = f"""Given -> rds_df_trim_str_columns = 'true'"""
LOGGER.info(f"""{msg_prefix}. Stripping string column spaces.""")
LOGGER.info(f"""Given -> rds_df_trim_str_columns = 'true'""")
LOGGER.warn(f""">> Stripping string column spaces <<""")

df_rds_temp_t2 = df_rds_temp_t1.transform(rds_df_trim_str_columns)

Expand Down
Loading
Loading