Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

modified example_tls2.py through MilvusClient #2077

Merged
merged 1 commit into from
May 14, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
162 changes: 61 additions & 101 deletions examples/example_tls2.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,8 @@
import random

from pymilvus import (
connections,
MilvusClient,
FieldSchema, CollectionSchema, DataType,
Collection,
utility
)

Expand All @@ -17,6 +16,7 @@

_HOST = '127.0.0.1'
_PORT = '19530'
_URI = f"https://{_HOST}:{_PORT}"

# Const names
_COLLECTION_NAME = 'demo'
Expand All @@ -35,132 +35,92 @@
_TOPK = 3


# Create a Milvus connection
def create_connection():
def main():
# create a connection
print(f"\nCreate connection...")
connections.connect(host=_HOST, port=_PORT, secure=True, client_pem_path="cert/client.pem",
client_key_path="cert/client.key",
ca_pem_path="cert/ca.pem", server_name="localhost")
print(f"\nList connections:")
print(connections.list_connections())
milvus_client = MilvusClient(uri=_URI,
secure=True,
client_pem_path="cert/client.pem",
client_key_path="cert/client.key",
ca_pem_path="cert/ca.pem",
server_name='localhost')
print(f"\nList connection:")
print(milvus_client._get_connection())

# drop collection if the collection exists
if milvus_client.has_collection(_COLLECTION_NAME):
milvus_client.drop_collection(_COLLECTION_NAME)

# Create a collection named 'demo'
def create_collection(name, id_field, vector_field):
field1 = FieldSchema(name=id_field, dtype=DataType.INT64, description="int64", is_primary=True)
field2 = FieldSchema(name=vector_field, dtype=DataType.FLOAT_VECTOR, description="float vector", dim=_DIM,
# create collection
field1 = FieldSchema(name=_ID_FIELD_NAME, dtype=DataType.INT64, description="int64", is_primary=True)
field2 = FieldSchema(name=_VECTOR_FIELD_NAME, dtype=DataType.FLOAT_VECTOR, description="float vector", dim=_DIM,
is_primary=False)
schema = CollectionSchema(fields=[field1, field2], description="collection description")
collection = Collection(name=name, data=None, schema=schema)
print("\ncollection created:", name)
return collection


def has_collection(name):
return utility.has_collection(name)
milvus_client.create_collection(collection_name=_COLLECTION_NAME,schema=schema)
milvus_client.describe_collection(collection_name=_COLLECTION_NAME)

print("\ncollection created:", _COLLECTION_NAME)

# Drop a collection in Milvus
def drop_collection(name):
collection = Collection(name)
collection.drop()
print("\nDrop collection: {}".format(name))


# List all collections in Milvus
def list_collections():
# show collections
print("\nlist collections:")
print(utility.list_collections())


def insert(collection, num, dim):
data = [
[i for i in range(num)],
[[random.random() for _ in range(dim)] for _ in range(num)],
]
collection.insert(data)
return data[1]
print(milvus_client.list_collections())

# insert 10000 vectors with 128 dimension
data_dict = []
for i in range(10000):
entity = {
"id_field": i+1, # Assuming id_field is the _COLLECTION_NAME of the field corresponding to the ID
"float_vector_field": [random.random() for _ in range(_DIM)]
}
data_dict.append(entity)
insert_result = milvus_client.insert(collection_name=_COLLECTION_NAME,data=data_dict)

def get_entity_num(collection):
print("\nThe number of entity:")
print(collection.num_entities)


def create_index(collection, filed_name):
index_param = {
"index_type": _INDEX_TYPE,
"params": {"nlist": _NLIST},
"metric_type": _METRIC_TYPE}
collection.create_index(filed_name, index_param)
print("\nCreated index:\n{}".format(collection.index().params))


def drop_index(collection):
collection.drop_index()
print("\nDrop index sucessfully")

# get the number of entities
print(f"\nThe number of entity: {insert_result['insert_count']}")

def load_collection(collection):
collection.load()
# create index
index_params = milvus_client.prepare_index_params()

index_params.add_index(
field_name=_VECTOR_FIELD_NAME,
index_type=_INDEX_TYPE,
metric_type=_METRIC_TYPE,
params={"nlist": _NLIST}
)

def release_collection(collection):
collection.release()
milvus_client.create_index(
collection_name=_COLLECTION_NAME,
index_params=index_params
)
print("\nCreated index")

# load data to memory
milvus_client.load_collection(_COLLECTION_NAME)
vector = data_dict[1]
vectors = [vector["float_vector_field"]]

def search(collection, vector_field, id_field, search_vectors):
# search
search_param = {
"data": search_vectors,
"anns_field": vector_field,
"anns_field": _VECTOR_FIELD_NAME,
"param": {"metric_type": _METRIC_TYPE, "params": {"nprobe": _NPROBE}},
"limit": _TOPK,
"expr": "id_field > 0"}
results = collection.search(**search_param)
"expr": f"{_ID_FIELD_NAME} > 0"}
results = milvus_client.search(collection_name=_COLLECTION_NAME,data=vectors,limit= _TOPK,search_params=search_param)
for i, result in enumerate(results):
print("\nSearch result for {}th vector: ".format(i))
for j, res in enumerate(result):
print("Top {}: {}".format(j, res))


def main():
# create a connection
create_connection()

# drop collection if the collection exists
if has_collection(_COLLECTION_NAME):
drop_collection(_COLLECTION_NAME)

# create collection
collection = create_collection(_COLLECTION_NAME, _ID_FIELD_NAME, _VECTOR_FIELD_NAME)

# show collections
list_collections()

# insert 10000 vectors with 128 dimension
vectors = insert(collection, 10000, _DIM)

# get the number of entities
get_entity_num(collection)

# create index
create_index(collection, _VECTOR_FIELD_NAME)

# load data to memory
load_collection(collection)

# search
search(collection, _VECTOR_FIELD_NAME, _ID_FIELD_NAME, vectors[:3])

# release memory
release_collection(collection)
milvus_client.release_collection(_COLLECTION_NAME)

# drop collection index
drop_index(collection)
milvus_client.drop_index(_COLLECTION_NAME,index_name=_VECTOR_FIELD_NAME)
print("\nDrop index sucessfully")

# drop collection
drop_collection(_COLLECTION_NAME)
milvus_client.drop_collection(_COLLECTION_NAME)
print("\nDrop collection: {}".format(_COLLECTION_NAME))


if __name__ == '__main__':
main()
main()