This is the pytorch implementation of the AAAI 2020 poster paper "Domain Generalization Using a Mixture of Multiple Latent Domains".
Docker image:
nvcr.io/milut/medical/krs-pytorch-demo:1.0.0
sudo chmod 666 /dev/video0
docker run command:
docker run -it --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 -e DISPLAY=unix${DISPLAY} -v /tmp/.X11-unix:/tmp/.X11-unix -u `id -u` -v ${HOME}:${HOME} -w ${HOME} --device /dev/video1:/dev/video1:mwr --device /dev/video0:/dev/video0:mwr nvcr.io/milut/medical/krs-pytorch-demo:1.0.0 /bin/bash
command:
python gui.py
- A Python install version 3.6
- A PyTorch and torchvision installation version 0.4.1 and 0.2.1, respectively. pytorch.org
- The caffe model we used for AlexNet
- PACS dataset (website, dateset)
- Install python requirements
pip install -r requirements.txt
You can train the model using the following command.
cd script
bash general.sh
If you want to train the model without domain generalization (Deep All), you can also use the following command.
cd script
bash deepall.sh
You can set the correct parameter.
- --data-root: the dataset folder path
- --save-root: the folder path for saving the results
- --gpu: the gpu id to run experiments
If you use this code, please cite the following paper:
Toshihiko Matsuura and Tatsuya Harada. Domain Generalization Using a Mixture of Multiple Latent Domains. In AAAI, 2020.
@InProceedings{dg_mmld,
title={Domain Generalization Using a Mixture of Multiple Latent Domains},
author={Toshihiko Matsuura and Tatsuya Harada},
booktitle={AAAI},
year={2020},
}