Skip to content

OCI container builder for RPM-based Linux distributions

License

Notifications You must be signed in to change notification settings

microsoft/rpmoci

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

rpmoci

rpmoci builds OCI container images from RPM packages, using DNF. It's essentially a containerization wrapper around dnf install --installroot=/some/rootfs PACKAGE [PACKAGE ...].

rpmoci features:

  • deterministic rpmoci locks RPM dependencies using the package file/lockfile paradigm of bundler/cargo etc and can produce reproducible images with identical digests.
  • unprivileged rpmoci can build images in environments without access to a container runtime, and can also run in a user namespace.
  • small rpmoci images are built solely from the RPMs you request and their dependencies, so don't contain unnecessary dependencies.

rpmoci is a good fit for containerizing applications - you package your application as an RPM, and then use rpmoci to build a minimal container image from that RPM.

The design of rpmoci is influenced by apko and distroless tooling. rpmoci is also similar to a smaller rpm-ostree compose image, with a focus on building microservices.

Installing

rpmoci has a runtime dependency on dnf, so requires a Linux distribution with dnf support.

rpmoci is available to download from crates.io, so you'll need a Rust toolchain. You also need to install the sqlite, python3 and openssl development packages (e.g sqlite-devel, python3-devel and openssl-devel on Fedora and RHEL derivatives).

Then install rpmoci via cargo:

cargo install rpmoci

Building

Per the above, you'll need dnf, Rust, python3-devel and openssl-devel installed.

cargo build

Rootless

rpmoci can create images as a non-root user using user namespaces.

$ unshare --map-auto --map-root-user --user rpmoci build --image foo --tag bar

Getting started

You need to create an rpmoci.toml file. An example is:

[contents] # specifies the RPMs that comprise the image
repositories = [ "mariner-official-base" ]
packages = [
  "tini"
]

[image] # specifies image configuration such as entrypoint, ports, cmd, etc.
entrypoint = [ "tini", "--" ]

This configures rpmoci to install tini and its dependencies from the mariner-official-base repository, and configures the image entrypoint to use tini.

This can then be built into an image:

sudo rpmoci build --image tini --tag my-first-rpmoci-image

The image will be created in a OCI layout directory called tini. rpmoci doesn't handle image distribution - users are expected to use tools like oras or skopeo to push the image to a registry.

A lockfile, rpmoci.lock, will be created so you can re-run the build later and get the same packages. assuming they still exist in the specified repository... rpmoci supports vendoring RPMs so you can repeat locked builds without relying on that

Reference

Package Specification

Repository configuration

The repository section defines where RPMs are sourced from.

In the getting started example, the repository was specified by its repo id on the running system. It is also possible to fully specify the repository in rpmoci.toml, if you want to create a portable rpmoci.toml that can say, build the same image when running on Fedora/Ubuntu/Mariner.

Repositories can be specified via their base URL

[contents]
repositories = ["https://packages.microsoft.com/cbl-mariner/2.0/prod/base/x86_64"]

or defined with additional configuration options in the package manifest file (rpmoci.toml by default, can be specified via -f FILE on CLI)

[[contents.repositories]]
url = "https://packages.microsoft.com/cbl-mariner/2.0/prod/base/x86_64/"
options = { includepkgs = "foo,bar" }

By default the gpgcheck and sslverify are enabled - these can be disabled via the options field.

All system repos are ignored, other than those explicitly specified via repo id. dnf plugins are supported, but rpmoci doesn't support specifying plugin configuration.

Package configuration

Package specifications are added under the contents.packages key. Both local and remote packages are supported

[contents]
repositories = ["https://packages.microsoft.com/cbl-mariner/2.0/prod/base/x86_64"]
packages = [
  "postgreqsl", # a package from the above repository
  "path/to/local.rpm", # a local RPM
]

Documentation file

Whether or not documentation files are included in the produced containers can be specified via the content.docs boolean field. By default documentation files are not included, optimizing for image size.

GPG key configuration

GPG keys can be configued via the repository options or the gpgkeys field

[contents]
repositories = ["https://packages.microsoft.com/cbl-mariner/2.0/prod/base/x86_64"]
gpgkeys = [
  "https://raw.githubusercontent.com/microsoft/CBL-Mariner/2.0/SPECS/mariner-repos/MICROSOFT-RPM-GPG-KEY"
]
packages = [
  "postgresql"
]

When building images the package signatures will be verified using the configured GPG keys, except for local packages or packages from repositories where gpgcheck has explicitly been disabled.

Authenticated RPM repositories

To use a repository that requires HTTP basic authentication, specify an id for the repository in the toml file, and define the environment variables RPMOCI_<id>_HTTP_USERNAME and RPMOCI_<id>_HTTP_PASSWORD to be the HTTP authentication credentials, where <id> is the uppercased repo id.

E.g with the following configuration you would need to define the environment variables RPMOCI_FOO_HTTP_USERNAME and RPMOCI_FOO_HTTP_PASSWORD:

[[contents.repositories]]
url = "https://packages.microsoft.com/cbl-mariner/2.0/prod/base/x86_64/"
id = "foo"

Image configuration

Additional image configuration can be specified under the image key:

[contents]
repositories = ["https://packages.microsoft.com/cbl-mariner/2.0/prod/base/x86_64"]
gpgkeys = [
  "https://raw.githubusercontent.com/microsoft/CBL-Mariner/2.0/SPECS/mariner-repos/MICROSOFT-RPM-GPG-KEY"
]
packages = [
  "postgresql"
]
[image]
entrypoint = ["tini", "--"]
cmd = [ "foo" ]
exposed_ports = ["8080/tcp"]

[image.envs]
RUST_BACKTRACE = "1"
RUST_LOG = "hyper=info"

The config section of the OCI image spec, linked above, maps to the image section in rpmoci.toml. For example to specify image labels you can use the image.labels section and to specify image environment variables use image.envs.

The PATH environment variable is set to /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin by default, but can be overridden via the image.envs field.

/etc/os-release

Whether /etc/os-release is automatically included as a dependency during resolution, hence installed in the produced image, can be specified via the content.os_release boolean field. This enables SBOM and vulnerability scanning tools to better determine the provenance of packages within the image. By default this field is enabled.

The /etc/os-release file can also be included by adding the distro's <distro>-release package to the packages array: this field exists to ensure the /etc/os-release file is included by default.

Weak dependencies

rpmoci does not install weak dependencies, optimizing for small container image sizes.

Image building

Running rpmoci build --image foo --tag bar will build a container image in OCI format.

$ rpmoci build --image foo --tag bar
...
$ cat foo/index.json | jq
{
  "schemaVersion": 2,
  "manifests": [
    {
      "mediaType": "application/vnd.oci.image.manifest.v1+json",
      "digest": "sha256:1ad8cc1866d359e4e2ecb37fcc96759815540f06cb468811dcb9b8aac51da90d",
      "size": 350,
      "annotations": {
        "org.opencontainers.image.ref.name": "bar"
      }
    }
  ]
}

This image can then be copied using OCI tools such as skopeo or oras. E.g to copy to a local docker daemon:

$ skopeo copy oci:foo:bar docker-daemon:foo:bar
Getting image source signatures
Copying blob 77b582c1f09c done
Copying config 577bea913f done
Writing manifest to image destination
Storing signatures

Lockfiles

rpmoci uses DNF to produce a lockfile of the build. This can be used to subsequently repeat the build with rpmoci build --locked.

A lockfile can be created or updated by running rpmoci update:

$ rpmoci update
Adding filesystem 1.1-10.cm2
Adding grep 3.7-2.cm2
Adding openssl 1.1.1k-17.cm2
Adding libgcc 11.2.0-2.cm2
Adding postgresql 14.2-2.cm2
Adding libxml2 2.9.14-1.cm2
Adding ncurses-libs 6.3-1.cm2
Adding pcre 8.45-2.cm2
Adding pcre-libs 8.45-2.cm2
Adding glibc 2.35-2.cm2
Adding bash 5.1.8-1.cm2
Adding libsepol 3.2-2.cm2
Adding libcap 2.60-1.cm2
Adding krb5 1.19.3-1.cm2
Adding openldap 2.4.57-7.cm2
Adding coreutils 8.32-3.cm2
Adding postgresql-libs 14.2-2.cm2
Adding libselinux 3.2-1.cm2
Adding openssl-libs 1.1.1k-17.cm2
Adding readline 8.1-1.cm2
Adding tzdata 2022a-1.cm2
Adding xz-libs 5.2.5-1.cm2
Adding libstdc++ 11.2.0-2.cm2
Adding zlib 1.2.12-1.cm2
Adding e2fsprogs-libs 1.46.5-1.cm2
Adding gmp 6.2.1-2.cm2
Adding bzip2-libs 1.0.8-1.cm2

Reproducible builds

rpmoci can produce bitwise reproducible container image builds, assuming that the RPMs can be reproducibly installed (an rpmoci build won't be reproducible if it involves RPMs that have unreproducible post-install scripts for example). rpmoci attempts to remove sources of non-determinism from the container image, and respects the SOURCE_DATE_EPOCH environment variable.

When SOURCE_DATE_EPOCH is not set, the image creation time in the OCI image config is set to the current time. In this scenario rpmoci still removes non-deteministic data from the image, and the build can later be reproduced by setting SOURCE_DATE_EPOCH to the creation time of the image (by converting the timestamp in the image config to seconds since unix epoch).

This feature is only been tested on Mariner Linux, but should work when rpmoci is run on any Linux distribution that writes the rpmdb as a sqlite database to /var/lib/rpm/rpmdb.sqlite.

Vendoring

RPMs can be vendored to a folder using rpmoci vendor. A vendor folder can be used during a build to avoid contacting package repositories.

$ rpmoci vendor --out-dir vendor
$ ls vendor
ls vendor
031e779a7ce198662c5b266d7b0dfc9eece9c0c888a657b6a9bb7731df0096d0.rpm  8ea3d75dbb48fa12eacf732af89a600bd97709b55f88d98fe129c13ab254de95.rpm
...
$ rpmoci build --image foo --tag bar --vendor-dir vendor

Vendor directories from different invocations of rpmoci vendor should be kept isolated, as rpmoci currently attempts to install all RPMs from the vendor directory.

SBOM support

rpmoci doesn't have native SBOM support, but because it just uses standard OS package functionality SBOM generators like trivy and syft can be used to generate SBOMs for the produced images.

Developing

rpmoci is written in Rust and currently resolves RPMs using DNF via an embedded Python module.

It has buildtime dependencies on python3-devel and openssl-devel.

After checking out the project you can do

cargo run

to run it, or build an RPM using cargo-generate-rpm:

cargo generate-rpm

Testing

The tests are run via cargo test. The integration tests in tests/it.rs run rpmoci build, so must be run either as root, or with user namespace support setup.

The tests use test-temp-dir, so you can set the TEST_TEMP_RETAIN environment variable to 1 so that the test directories are kept around for debugging in <CARGO_TARGET_DIR>/tests.