Skip to content

Commit

Permalink
[js/webgpu] Add LeakyRelu activation for fusedConv (#19369)
Browse files Browse the repository at this point in the history
### Description
This PR 1) adds LeakyRelu activation for fusedConv; 2) makes `vec4<f16>`
value work with `float32` uniforms attributes.

For example:
`clamp(value, vec4<f16>(uniforms.clip_min),
vec4<f16>(uniforms.clip_max)` will throw compilation errors since
`uniforms.clip_min` and `uniforms.clip_min` are `f32` not `f16`. So we
need to change it to `clamp(value, vec4<f16>(f16(uniforms.clip_min)),
vec4<f16>(f16(uniforms.clip_max))`

And above problem was introduced when we make activation attributes as
uniforms instead of constant.

BTW, after adding LeakyRelu, `realesrgan-t256` model can pass.
  • Loading branch information
qjia7 authored and fs-eire committed Mar 15, 2024
1 parent 803c85c commit c3e7768
Show file tree
Hide file tree
Showing 6 changed files with 184 additions and 25 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -130,7 +130,7 @@ const conv2dCommonSnippet =
isChannelsLast ? typeSnippet(innerElementSizeX, dataType) : typeSnippet(innerElementSizeW, dataType);
const bType =
isChannelsLast ? typeSnippet(innerElementSizeW, dataType) : typeSnippet(innerElementSizeX, dataType);
const applyActivation = getActivationSnippet(attributes, resType);
const applyActivation = getActivationSnippet(attributes, resType, dataType);
const userCode = `
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${aType} {
${isChannelsLast ? sampleX : sampleW}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -479,7 +479,8 @@ export const createMatmulProgramInfo =
const uniforms: UniformsArrayType =
[{name: 'dim_a_outer', type: 'i32'}, {name: 'dim_b_outer', type: 'i32'}, {name: 'dim_inner', type: 'i32'}];
appendActivationUniforms(activationAttributes, uniforms);
const applyActivation = getActivationSnippet(activationAttributes, output.type.value);
const baseType = tensorTypeToWsglStorageType(output.type.tensor);
const applyActivation = getActivationSnippet(activationAttributes, output.type.value, baseType);
const declareFunctions = matMulReadWriteFnSource(
components, hasBias, applyActivation, [batchDims, A, B, output], [outerDimsA, outerDimsB, outerDims],
isChannelsLast);
Expand Down
8 changes: 5 additions & 3 deletions js/web/lib/wasm/jsep/webgpu/ops/conv-grouped.ts
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ import {TensorView} from '../../tensor-view';
import {ShapeUtil} from '../../util';
import {ProgramInfo, ProgramInputTensorInfoDependency, ProgramUniform} from '../types';

import {createTensorShapeVariables, getMaxComponents, inputVariable, outputVariable, ShaderHelper, UniformsArrayType} from './common';
import {createTensorShapeVariables, getMaxComponents, inputVariable, outputVariable, ShaderHelper, tensorTypeToWsglStorageType, UniformsArrayType} from './common';
import {calculateOutputShape, ConvAttributes} from './conv';
import {appendActivationUniforms, appendActivationUniformsData, getActivationSnippet} from './fuse-utils';

Expand Down Expand Up @@ -45,7 +45,8 @@ export const createGroupedConvProgramInfo =

const getShaderSource = (shaderHelper: ShaderHelper) => {
const output = outputVariable('output', inputs[0].dataType, outputShape.length);
const applyActivation = getActivationSnippet(attributes, output.type.value);
const baseType = tensorTypeToWsglStorageType(output.type.tensor);
const applyActivation = getActivationSnippet(attributes, output.type.value, baseType);
const x = inputVariable('x', inputs[0].dataType, xShape.length);
const w = inputVariable('w', inputs[1].dataType, wShape.length);
const inputVars = [x, w];
Expand Down Expand Up @@ -136,7 +137,8 @@ export const createGroupedConvVectorizeProgramInfo =
const xNumber = (outputNumber - 1) * attributes.strides[1] + wShape[1];
const getShaderSource = (shaderHelper: ShaderHelper) => {
const output = outputVariable('output', inputs[0].dataType, outputShapeInShader.length, components);
const applyActivation = getActivationSnippet(attributes, output.type.value);
const baseType = tensorTypeToWsglStorageType(output.type.tensor);
const applyActivation = getActivationSnippet(attributes, output.type.value, baseType);
const x = inputVariable('x', inputs[0].dataType, xShape.length, components);
const w = inputVariable('w', inputs[1].dataType, wShape.length, components);
const inputVars = [x, w];
Expand Down
47 changes: 29 additions & 18 deletions js/web/lib/wasm/jsep/webgpu/ops/fuse-utils.ts
Original file line number Diff line number Diff line change
Expand Up @@ -15,24 +15,28 @@ export interface InternalActivationAttributes {
readonly beta?: number;
}

export const getActivationSnippet = (attributes: InternalActivationAttributes, valueType: string): string => {
switch (attributes.activation) {
case 'Relu':
return `value = max(value, ${valueType}(0.0));`;
case 'Sigmoid':
return `value = (${valueType}(1.0) / (${valueType}(1.0) + exp(-value)));`;
case 'Clip':
return `value = clamp(value, ${valueType}(uniforms.clip_min), ${valueType}(uniforms.clip_max));`;
case 'HardSigmoid':
return `value = max(${valueType}(0.0), min(${valueType}(1.0), ${valueType}(uniforms.alpha) * value + ${
valueType}(uniforms.beta)));`;
case '':
return '';
// TODO: adding other activations that can be fused.
default:
throw new Error(`Unsupported activation ${attributes.activation}`);
}
};
export const getActivationSnippet =
(attributes: InternalActivationAttributes, valueType: string, baseType = 'f32'): string => {
switch (attributes.activation) {
case 'Relu':
return `value = max(value, ${valueType}(0.0));`;
case 'Sigmoid':
return `value = (${valueType}(1.0) / (${valueType}(1.0) + exp(-value)));`;
case 'Clip':
return `value = clamp(value, ${valueType}(${baseType}(uniforms.clip_min)), ${valueType}(${
baseType}(uniforms.clip_max)));`;
case 'HardSigmoid':
return `value = max(${valueType}(0.0), min(${valueType}(1.0), ${baseType}(uniforms.alpha) * value + ${
baseType}(uniforms.beta)));`;
case 'LeakyRelu':
return `value = select(${baseType}(uniforms.alpha) * value, value, value >= ${valueType}(0.0));`;
case '':
return '';
// TODO: adding other activations that can be fused.
default:
throw new Error(`Unsupported activation ${attributes.activation}`);
}
};

export const appendActivationUniformsData =
(attributes: InternalActivationAttributes, programUniform: ProgramUniform[]) => {
Expand All @@ -42,6 +46,8 @@ export const appendActivationUniformsData =
} else if (attributes.activation === 'HardSigmoid') {
programUniform.push(
{type: DataType.float, data: attributes.alpha!}, {type: DataType.float, data: attributes.beta!});
} else if (attributes.activation === 'LeakyRelu') {
programUniform.push({type: DataType.float, data: attributes.alpha!});
}
};

Expand All @@ -50,6 +56,8 @@ export const appendActivationUniforms = (attributes: InternalActivationAttribute
uniforms.push({name: 'clip_max', type: 'f32'}, {name: 'clip_min', type: 'f32'});
} else if (attributes.activation === 'HardSigmoid') {
uniforms.push({name: 'alpha', type: 'f32'}, {name: 'beta', type: 'f32'});
} else if (attributes.activation === 'LeakyRelu') {
uniforms.push({name: 'alpha', type: 'f32'});
}
};

Expand All @@ -62,6 +70,9 @@ export const parseInternalActivationAttributes =
} else if (activation === 'Clip') {
const [clipMin, clipMax] = attributes?.activation_params as [number, number] || [MIN_CLIP, MAX_CLIP];
return {activation, clipMax, clipMin};
} else if (activation === 'LeakyRelu') {
const [alpha] = attributes?.activation_params as [number] || [0.01];
return {activation, alpha};
}
return {activation};
};
5 changes: 3 additions & 2 deletions js/web/lib/wasm/jsep/webgpu/ops/matmul.ts
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ import {BroadcastUtil, ShapeUtil} from '../../util';
import {ComputeContext, ProgramInfo, ProgramUniform} from '../types';

import {createMatmulProgramInfo} from './3rd-party/matmul_packed_webgpu';
import {createTensorShapeVariables, getBroadcastDims, getMaxComponents, IndicesHelper, inputVariable, internalVariable, outputVariable, ShaderHelper, UniformsArrayType,} from './common';
import {createTensorShapeVariables, getBroadcastDims, getMaxComponents, IndicesHelper, inputVariable, internalVariable, outputVariable, ShaderHelper, tensorTypeToWsglStorageType, UniformsArrayType} from './common';
import {appendActivationUniforms, appendActivationUniformsData, getActivationSnippet, InternalActivationAttributes} from './fuse-utils';

export const createNaiveMatmulProgramInfo =
Expand Down Expand Up @@ -45,7 +45,8 @@ export const createNaiveMatmulProgramInfo =
const a = inputVariable('a', inputs[0].dataType, aShape.length, aComponents);
const b = inputVariable('b', inputs[1].dataType, bShape.length, components);
const output = outputVariable('output', inputs[0].dataType, outputShapeInShader.length, components);
const applyActivation = getActivationSnippet(activationAttributes, output.type.value);
const baseType = tensorTypeToWsglStorageType(output.type.tensor);
const applyActivation = getActivationSnippet(activationAttributes, output.type.value, baseType);
const inputVariables = [a, b];
let processBias = '';
if (hasBias) {
Expand Down
144 changes: 144 additions & 0 deletions js/web/test/data/ops/fused-conv.jsonc
Original file line number Diff line number Diff line change
Expand Up @@ -286,5 +286,149 @@
]
}
]
},
{
"name": "fused group-conv with LeakyRelu",
"operator": "FusedConv",
"attributes": [
{ "name": "activation", "data": "LeakyRelu", "type": "string" },
{ "name": "kernel_shape", "data": [2, 2], "type": "ints" },
{ "name": "group", "data": 3, "type": "int" },
{ "name": "activation_params", "data": [2.0], "type": "floats" }
],
"opset": { "domain": "com.microsoft", "version": 1 },
"cases": [
{
"name": "T[0]",
"inputs": [
{
"data": [
0.0, 1.0, 2.0, -3.0, 4.0, -5.0, 6.0, 7.0, 8.0, -9.0, -10.0, 11.0, -12.0, 13.0, -14.0, 15.0, 16.0, 17.0,
18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0
],
"dims": [1, 3, 3, 3],
"type": "float32"
},
{
"data": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
"dims": [3, 1, 2, 2],
"type": "float32"
}
],
"outputs": [
{
"data": [9, -6, 51, 47, -170, -10, 251, 229, 847, 889, 973, 1015],
"dims": [1, 3, 2, 2],
"type": "float32"
}
]
}
]
},
{
"name": "NHWC group-conv with LeakyRelu",
"operator": "Conv",
"attributes": [
{ "name": "activation", "data": "LeakyRelu", "type": "string" },
{ "name": "kernel_shape", "data": [2, 2], "type": "ints" },
{ "name": "group", "data": 3, "type": "int" },
{ "name": "activation_params", "data": [2.0], "type": "floats" }
],
"opset": { "domain": "com.ms.internal.nhwc", "version": 1 },
"cases": [
{
"name": "T[0]",
"inputs": [
{
"data": [
0.0, 1.0, 2.0, -3.0, 4.0, -5.0, 6.0, 7.0, 8.0, -9.0, -10.0, 11.0, -12.0, 13.0, -14.0, 15.0, 16.0, 17.0,
18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0
],
"dims": [1, 3, 3, 3],
"type": "float32"
},
{
"data": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
"dims": [3, 1, 2, 2],
"type": "float32"
}
],
"outputs": [
{
"data": [-162, 63, -158, 33, 281, 85, 105, 337, 455, 177, 515, 609],
"dims": [1, 2, 2, 3],
"type": "float32"
}
]
}
]
},
{
"name": "fused conv with LeakyRelu",
"operator": "FusedConv",
"attributes": [
{ "name": "activation", "data": "LeakyRelu", "type": "string" },
{ "name": "kernel_shape", "data": [2, 2], "type": "ints" },
{ "name": "activation_params", "data": [2.0], "type": "floats" }
],
"opset": { "domain": "com.microsoft", "version": 1 },
"cases": [
{
"name": "T[0]",
"inputs": [
{
"data": [10, 20, -30, -40, -50, -60, 70, 80, 90],
"dims": [1, 1, 3, 3],
"type": "float32"
},
{
"data": [1, 2, 3, 4],
"dims": [1, 1, 2, 2],
"type": "float32"
}
],
"outputs": [
{
"data": [-540, -860, 390, 430],
"dims": [1, 1, 2, 2],
"type": "float32"
}
]
}
]
},
{
"name": "NHWC conv with LeakyRelu",
"operator": "Conv",
"attributes": [
{ "name": "activation", "data": "LeakyRelu", "type": "string" },
{ "name": "kernel_shape", "data": [2, 2], "type": "ints" },
{ "name": "activation_params", "data": [2.0], "type": "floats" }
],
"opset": { "domain": "com.ms.internal.nhwc", "version": 1 },
"cases": [
{
"name": "T[0]",
"inputs": [
{
"data": [10, 20, -30, -40, -50, -60, 70, 80, 90],
"dims": [1, 3, 3, 1],
"type": "float32"
},
{
"data": [1, 2, 3, 4],
"dims": [1, 1, 2, 2],
"type": "float32"
}
],
"outputs": [
{
"data": [-540, -860, 390, 430],
"dims": [1, 2, 2, 1],
"type": "float32"
}
]
}
]
}
]

0 comments on commit c3e7768

Please sign in to comment.